Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Ecotoxicology ; 27(2): 217-233, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29297133

RESUMO

Copper (Cu)-based fungicides have been used in viticulture to prevent downy mildew since the end of the 19th century, and are still used today to reduce fungal diseases. Consequently, Cu has built up in many vineyard soils, and it is still unclear how this affects soil functioning. The present study aimed to assess the short and medium-term effects of Cu contamination on the soil fungal community. Two contrasting agricultural soils, an acidic sandy loam and an alkaline silt loam, were used for an eco-toxicological greenhouse pot experiment. The soils were spiked with a Cu-based fungicide in seven concentrations (0-5000 mg Cu kg-1 soil) and alfalfa was grown in the pots for 3 months. Sampling was conducted at the beginning and at the end of the study period to test Cu toxicity effects on total microbial biomass, basal respiration and enzyme activities. Fungal abundance was analysed by ergosterol at both samplings, and for the second sampling, fungal community structure was evaluated via ITS amplicon sequences. Soil microbial biomass C as well as microbial respiration rate decreased with increasing Cu concentrations, with EC50 ranging from 76 to 187 mg EDTA-extractable Cu kg-1 soil. Oxidative enzymes showed a trend of increasing activity at the first sampling, but a decline in peroxidase activity was observed for the second sampling. We found remarkable Cu-induced changes in fungal community abundance (EC50 ranging from 9.2 to 94 mg EDTA-extractable Cu kg-1 soil) and composition, but not in diversity. A large number of diverse fungi were able to thrive under elevated Cu concentrations, though within the order of Hypocreales several species declined. A remarkable Cu-induced change in the community composition was found, which depended on the soil properties and, hence, on Cu availability.


Assuntos
Cobre/toxicidade , Monitoramento Ambiental , Fungos/efeitos dos fármacos , Microbiologia do Solo , Poluentes do Solo/toxicidade , Agricultura/métodos , Biomassa , Fungicidas Industriais , Solo/química
2.
J Agric Food Chem ; 64(2): 513-27, 2016 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-26693953

RESUMO

Biochar produced by pyrolysis of organic residues is increasingly used for soil amendment and many other applications. However, analytical methods for its physical and chemical characterization are yet far from being specifically adapted, optimized, and standardized. Therefore, COST Action TD1107 conducted an interlaboratory comparison in which 22 laboratories from 12 countries analyzed three different types of biochar for 38 physical-chemical parameters (macro- and microelements, heavy metals, polycyclic aromatic hydrocarbons, pH, electrical conductivity, and specific surface area) with their preferential methods. The data were evaluated in detail using professional interlaboratory testing software. Whereas intralaboratory repeatability was generally good or at least acceptable, interlaboratory reproducibility was mostly not (20% < mean reproducibility standard deviation < 460%). This paper contributes to better comparability of biochar data published already and provides recommendations to improve and harmonize specific methods for biochar analysis in the future.


Assuntos
Carvão Vegetal/análise , Técnicas de Química Analítica/normas , Laboratórios/normas , Técnicas de Química Analítica/instrumentação , Técnicas de Química Analítica/métodos , Padrões de Referência , Reprodutibilidade dos Testes
3.
PLoS One ; 10(4): e0123020, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25831054

RESUMO

The indication of origin of sesame seeds and sesame oil is one of the important factors influencing its price, as it is produced in many regions worldwide and certain provenances are especially sought after. We joined stable carbon and hydrogen isotope analysis with DNA based molecular marker analysis to study their combined potential for the discrimination of different origins of sesame seeds. For the stable carbon and hydrogen isotope data a positive correlation between both isotope parameters was observed, indicating a dominant combined influence of climate and water availability. This enabled discrimination between sesame samples from tropical and subtropical/moderate climatic provenances. Carbon isotope values also showed differences between oil from black and white sesame seeds from identical locations, indicating higher water use efficiency of plants producing black seeds. DNA based markers gave independent evidence for geographic variation as well as provided information on the genetic relatedness of the investigated samples. Depending on the differences in ambient environmental conditions and in the genotypic fingerprint, a combination of both analytical methods is a very powerful tool to assess the declared geographic origin. To our knowledge this is the first paper on food authenticity combining the stable isotope analysis of bio-elements with DNA based markers and their combined statistical analysis.


Assuntos
Identificação Biométrica/métodos , Isótopos de Carbono/análise , DNA de Plantas/genética , Óleo de Gergelim/análise , Sesamum/genética , DNA de Plantas/análise , Marcadores Genéticos/genética , Geografia , Projetos Piloto , Óleo de Gergelim/economia , Sesamum/química , Sesamum/classificação , Clima Tropical , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA