Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Neurophotonics ; 7(1): 015004, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32042853

RESUMO

Significance: Cortically implanted microelectrode arrays provide a direct interface with neuronal populations and are used to restore movement capabilities and provide sensory feedback to patients with paralysis or amputation. Penetrating electrodes experience high rates of signal degradation within the first year that limit effectiveness and lead to eventual device failure. Aim: To assess vascular and neuronal changes over time in mice with implanted electrodes and examine the contribution of the brain tissue response to electrode performance. Approach: We used a multimodal approach combining in vivo electrophysiology and subcellular-level optical imaging. Results: At acute timescales, we observed structural damage from the mechanical trauma of electrode insertion, evidenced by severed dendrites in the electrode path and local hypofluorescence. Superficial vessel growth and remodeling occurred within the first few weeks in both electrode-implanted and window-only animals, but the deeper capillary growth evident in window-only animals was suppressed in electrode-implanted animals. After longer implantation periods, there was evidence of degeneration of transected dendrites superficial to the electrode path and localized neuronal cell body loss, along with deep vascular velocity changes near the electrode. Total spike rate (SR) across all animals reached a peak between 3 and 9 months postimplantation, then decreased. The local field potential signal remained relatively constant for up to 6 months, particularly in the high-gamma band, indicating long-term electrode viability and neuronal functioning at further distances from the electrode, but it showed a reduction in some animals at later time points. Most importantly, we found that progressive high-gamma and SR reductions both correlate positively with localized cell loss and decreasing capillary density within 100 µ m of the electrode. Conclusions: This multifaceted approach provided a more comprehensive picture of the ongoing biological response at the brain-electrode interface than can be achieved with postmortem histology alone and established a real-time relationship between electrophysiology and tissue damage.

2.
Sci Rep ; 9(1): 15518, 2019 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-31664091

RESUMO

Exposure of the brain to high-intensity stress waves creates the potential for long-term functional deficits not related to thermal or cavitational damage. Possible sources of such exposure include overpressure from blast explosions or high-intensity focused ultrasound (HIFU). While current ultrasound clinical protocols do not normally produce long-term neurological deficits, the rapid expansion of potential therapeutic applications and ultrasound pulse-train protocols highlights the importance of establishing a safety envelope beyond which therapeutic ultrasound can cause neurological deficits not detectable by standard histological assessment for thermal and cavitational damage. In this study, we assessed the neuroinflammatory response, behavioral effects, and brain micro-electrocorticographic (µECoG) signals in mice following exposure to a train of transcranial pulses above normal clinical parameters. We found that the HIFU exposure induced a mild regional neuroinflammation not localized to the primary focal site, and impaired locomotor and exploratory behavior for up to 1 month post-exposure. In addition, low frequency (δ) and high frequency (ß, γ) oscillations recorded by ECoG were altered at acute and chronic time points following HIFU application. ECoG signal changes on the hemisphere ipsilateral to HIFU exposure are of greater magnitude than the contralateral hemisphere, and persist for up to three months. These results are useful for describing the upper limit of transcranial ultrasound protocols, and the neurological sequelae of injury induced by high-intensity stress waves.


Assuntos
Lesões Encefálicas/diagnóstico por imagem , Ablação por Ultrassom Focalizado de Alta Intensidade/métodos , Animais , Lesões Encefálicas/patologia , Lesões Encefálicas/fisiopatologia , Eletroencefalografia , Comportamento Exploratório , Locomoção , Estudos Longitudinais , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA