Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Cancer Res Ther ; 14(3): 634-639, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29893331

RESUMO

AIM: The objective was to quantify the accuracy of dose calculation for out-of-field regions by the commercially available TiGRT version 1.2 (LinaTech, Sunnyvale, CA, USA) treatment planning system (TPS) for a clinical treatment delivered on a Siemens Primus with the single energy of 6 MV. MATERIALS AND METHODS: Two tangential open fields were planned by TiGRT TPS to irradiate the left breast of a RANDO phantom. Dose values to out-of-field points were calculated by TiGRT TPS. A RANDO phantom was then irradiated, and dose values at set points were measured using thermoluminescent detectors-100 (TLDs-100) which were located within the phantom. Finally, the TLD-measured dose was compared to the TPS-calculated dose and the accuracy of TPS calculations at different distances from the field edge was quantified. RESULTS: The measurements showed that TiGRT TPS generally underestimated the dose of out-of-field points and this underestimation worsened for regions relatively close to the treatment field edge. The mean underestimation of out-of-field doses was 39%. Nevertheless, the accuracy of dose calculation by this TPS for most in-field regions was within tolerance. CONCLUSION: This study highlights the limitations of TiGRT TPSs in calculating of the out-of-field dose. It should be noted that out-of-field data for this TPS should only be applied with a certain understanding of the accuracy of calculated dose outside the treatment field. Therefore, using the TPS-calculated dose could lead to an underestimation of secondary cancer risk as well as a weak clinical decision for patients with implantable cardiac pacemakers or pregnant patients.


Assuntos
Algoritmos , Neoplasias da Mama/radioterapia , Imagens de Fantasmas , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/normas , Feminino , Humanos , Dosagem Radioterapêutica , Dosimetria Termoluminescente
2.
Contemp Oncol (Pozn) ; 21(3): 232-239, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29180932

RESUMO

AIM OF THE STUDY: Our objective was to quantify the accuracy of dose calculation in the build-up region of the tangential field of the breast for a TiGRT treatment planning system (TPS). MATERIAL AND METHODS: Thermoluminescent dosimeter (TLD) chips were arranged in a RANDO phantom for the dose measurement. TiGRT TPS was also used for the dose calculation. Finally, confidence limit values were obtained to quantify the accuracy of the dose calculation of the TPS at the build-up region. RESULTS: In the open field, for gantry angles of 15°, 30°, and 60°, the confidence limit values were 17.68, 19.97, and 34.62 at a depth of 5 mm, and 24.01, 19.07, and 15.74 at a depth of 15 mm, respectively. In the wedge field, for gantry angles of 15°, 30°, and 60°, the confidence limit values were 21.64, 26.80, and 34.87 at a depth of 5 mm, and 27.92, 22.04, and 20.03 at a depth of 15 mm, respectively. Additionally, the findings showed that at a depth of 5 mm, the confidence limit values increased with increasing gantry angle while at a depth of 15 mm, the confidence limit values decreased with increasing gantry angle. CONCLUSIONS: Overall, TiGRT TPS overestimated doses compared to TLD measurements, and the confidence limit values were greater for the wedge field than for the open fields. Our findings suggest that the assessment of dose distributions in large-dose gradient regions (i.e. build-up region) should not entirely rely on TPS calculations.

3.
Cell J ; 19(3): 434-442, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28836405

RESUMO

OBJECTIVES: The dose-response relationship of radiation-induced bystander effect (RIBE) is controversial at high dose levels. The aim of the present study is to assess RIBE at high dose levels by examination of different endpoints. MATERIALS AND METHODS: This experimental study used the medium transfer technique to induce RIBE. The cells were divided into two main groups: QU-DB cells which received medium from autologous irradiated cells and MRC5 cells which received medium from irradiated QU-DB cells. Colony, MTT, and micronucleus assays were performed to quantify bystander responses. The medium was diluted and transferred to bystander cells to investigate whether medium dilution could revive the RIBE response that disappeared at a high dose. RESULTS: The RIBE level in QU-DB bystander cells increased in the dose range of 0.5 to 4 Gy, but decreased at 6 and 8 Gy. The Micronucleated cells per 1000 binucleated cells (MNBN) frequency of QU-DB bystander cells which received the most diluted medium from 6 and 8 Gy QU-DB irradiated cells reached the maximum level compared to the MNBN frequency of the cells that received complete medium (P<0.0001). MNBN frequency of MRC5 cells which received the most diluted medium from 4 Gy QU-DB irradiated cells reached the maximum level compared to MNBN frequency of cells that received complete medium (P<0.0001). CONCLUSIONS: Our results showed that RIBE levels decreased at doses above 4 Gy; however, RIBE increased when diluted conditioned medium was transferred to bystander cells. This finding confirmed that a negative feedback mechanism was responsible for the decrease in RIBE response at high doses. Decrease of RIBE at high doses might be used to predict that in radiosurgery, brachytherapy and grid therapy, in which high dose per fraction is applied, normal tissue damage owing to RIBE may decrease.

4.
Australas Phys Eng Sci Med ; 37(3): 535-40, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24964872

RESUMO

Skin dose assessment for radiotherapy patients is important to ensure that the dose received by skin is not excessive and does not cause skin reactions. Immobilizing casts may have a buildup effect, and can enhance the skin dose. This study has quantified changes to the surface dose as a result of head and neck immobilizing casts. Medtech and Renfu casts were stretched on the head of an Alderson Rando-Phantom. Irradiation was performed using 6 and 15 MV X-rays, and surface dose was measured by thermoluminescence dosimeters. In the case of 15MV photons, immobilizing casts had no effect on the surface dose. However, the mean surface dose increase reached up to 20 % when 6MV X-rays were applied. Radiation incidence angle, thickness, and meshed pattern of the casts affected the quantity of dose enhancement. For vertical beams, the surface dose increase was more than tangential beams, and when doses of the points under different areas of the casts were analysed separately, results showed that only doses of the points under the thick area had been changed. Doses of the points under the thin area and those within the holes were identical to the same points without immobilizing casts. Higher dose which was incurred due to application of immobilizing casts (20 %) would not affect the quality of life and treatment of patients whose head and neck are treated. Therefore, the benefits of head and neck thermoplastic casts are more than their detriments. However, producing thinner casts with larger holes may reduce the dose enhancement effect.


Assuntos
Neoplasias de Cabeça e Pescoço/radioterapia , Imobilização , Pele/efeitos da radiação , Relação Dose-Resposta à Radiação , Humanos , Imagens de Fantasmas , Dosagem Radioterapêutica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA