Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
JAMA Psychiatry ; 80(5): 498-507, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37017948

RESUMO

Importance: Autism spectrum disorder (ASD) is associated with significant clinical, neuroanatomical, and genetic heterogeneity that limits precision diagnostics and treatment. Objective: To assess distinct neuroanatomical dimensions of ASD using novel semisupervised machine learning methods and to test whether the dimensions can serve as endophenotypes also in non-ASD populations. Design, Setting, and Participants: This cross-sectional study used imaging data from the publicly available Autism Brain Imaging Data Exchange (ABIDE) repositories as the discovery cohort. The ABIDE sample included individuals diagnosed with ASD aged between 16 and 64 years and age- and sex-match typically developing individuals. Validation cohorts included individuals with schizophrenia from the Psychosis Heterogeneity Evaluated via Dimensional Neuroimaging (PHENOM) consortium and individuals from the UK Biobank to represent the general population. The multisite discovery cohort included 16 internationally distributed imaging sites. Analyses were performed between March 2021 and March 2022. Main Outcomes and Measures: The trained semisupervised heterogeneity through discriminative analysis models were tested for reproducibility using extensive cross-validations. It was then applied to individuals from the PHENOM and the UK Biobank. It was hypothesized that neuroanatomical dimensions of ASD would display distinct clinical and genetic profiles and would be prominent also in non-ASD populations. Results: Heterogeneity through discriminative analysis models trained on T1-weighted brain magnetic resonance images of 307 individuals with ASD (mean [SD] age, 25.4 [9.8] years; 273 [88.9%] male) and 362 typically developing control individuals (mean [SD] age, 25.8 [8.9] years; 309 [85.4%] male) revealed that a 3-dimensional scheme was optimal to capture the ASD neuroanatomy. The first dimension (A1: aginglike) was associated with smaller brain volume, lower cognitive function, and aging-related genetic variants (FOXO3; Z = 4.65; P = 1.62 × 10-6). The second dimension (A2: schizophrenialike) was characterized by enlarged subcortical volumes, antipsychotic medication use (Cohen d = 0.65; false discovery rate-adjusted P = .048), partially overlapping genetic, neuroanatomical characteristics to schizophrenia (n = 307), and significant genetic heritability estimates in the general population (n = 14 786; mean [SD] h2, 0.71 [0.04]; P < 1 × 10-4). The third dimension (A3: typical ASD) was distinguished by enlarged cortical volumes, high nonverbal cognitive performance, and biological pathways implicating brain development and abnormal apoptosis (mean [SD] ß, 0.83 [0.02]; P = 4.22 × 10-6). Conclusions and Relevance: This cross-sectional study discovered 3-dimensional endophenotypic representation that may elucidate the heterogeneous neurobiological underpinnings of ASD to support precision diagnostics. The significant correspondence between A2 and schizophrenia indicates a possibility of identifying common biological mechanisms across the 2 mental health diagnoses.


Assuntos
Transtorno do Espectro Autista , Esquizofrenia , Humanos , Masculino , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Feminino , Transtorno do Espectro Autista/diagnóstico por imagem , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/patologia , Esquizofrenia/diagnóstico por imagem , Esquizofrenia/genética , Esquizofrenia/patologia , Endofenótipos , Estudos Transversais , Reprodutibilidade dos Testes , Neuroanatomia , Encéfalo , Imageamento por Ressonância Magnética/métodos
2.
Annu Rev Biomed Eng ; 13: 219-44, 2011 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-21568711

RESUMO

This review introduces a novel deformable image registration paradigm that exploits Markov random field formulation and powerful discrete optimization algorithms. We express deformable registration as a minimal cost graph problem, where nodes correspond to the deformation grid, a node's connectivity corresponds to regularization constraints, and labels correspond to 3D deformations. To cope with both iconic and geometric (landmark-based) registration, we introduce two graphical models, one for each subproblem. The two graphs share interconnected variables, leading to a modular, powerful, and flexible formulation that can account for arbitrary image-matching criteria, various local deformation models, and regularization constraints. To cope with the corresponding optimization problem, we adopt two optimization strategies: a computationally efficient one and a tight relaxation alternative. Promising results demonstrate the potential of this approach. Discrete methods are an important new trend in medical image registration, as they provide several improvements over the more traditional continuous methods. This is illustrated with several key examples where the presented framework outperforms existing general-purpose registration methods in terms of both performance and computational complexity. Our methods become of particular interest in applications where computation time is a critical issue, as in intraoperative imaging, or where the huge variation in data demands complex and application-specific matching criteria, as in large-scale multimodal population studies. The proposed registration framework, along with a graphical interface and corresponding publications, is available for download for research purposes (for Windows and Linux platforms) from http://www.mrf-registration.net.


Assuntos
Algoritmos , Aumento da Imagem/métodos , Processamento de Imagem Assistida por Computador/métodos , Tórax/anatomia & histologia , Tomografia Computadorizada Quadridimensional/métodos , Humanos , Modelos Lineares , Cadeias de Markov , Reconhecimento Automatizado de Padrão/métodos , Reprodutibilidade dos Testes , Técnica de Subtração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA