Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Curr Res Toxicol ; 3: 100071, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35602005

RESUMO

Exposures to mercury and arsenic are known to pose significant threats to human health. Effects specific to organic vs. inorganic forms of these toxic elements are less understood however, especially for organic dimethylarsinic acid (DMA), which has recently been detected in pups of rodent dams orally exposed to inorganic sodium (meta)arsenite (NaAsO2). Caenorhabditis elegans is a small animal alternative toxicity model. To fill data gaps on the effects of DMA relative to NaAsO2, C. elegans were exposed to these two compounds alongside more thoroughly researched inorganic mercury chloride (HgCl2) and organic methylmercury chloride (meHgCl). For timing of developmental milestone acquisition in C. elegans, meHgCl was 2 to 4-fold more toxic than HgCl2, and NaAsO2 was 20-fold more toxic than DMA, ranking the four compounds meHgCl > HgCl2 > NaAsO2 ≫ DMA for developmental toxicity. Methylmercury induced significant decreases in population locomotor activity levels in developing C. elegans. DMA was also associated with developmental hypoactivity, but at >100-fold higher concentrations than meHgCl. Transcriptional alterations in native genes were observed in wild type C. elegans adults exposed to concentrations equitoxic for developmental delay in juveniles. Both forms of arsenic induced genes involved in immune defense and oxidative stress response, while the two mercury species induced proportionally more genes involved in transcriptional regulation. A transgenic bioreporter for activation of conserved proteosome specific unfolded protein response was strongly activated by NaAsO2, but not DMA at tested concentrations. HgCl2 and meHgCl had opposite effects on a bioreporter for unfolded protein response in the endoplasmic reticulum. Presented experiments indicating low toxicity for DMA in C. elegans are consistent with human epidemiologic data correlating higher arsenic methylation capacity with resistance to arsenic toxicity. This work contributes to the understanding of the accuracy and fit-for-use categories for C. elegans toxicity screening and its usefulness to prioritize compounds of concern for further testing.

2.
Toxicol In Vitro ; 67: 104887, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32422165

RESUMO

3-chloro-1,2-propanediol (3-MCPD) and 3-MCPD esters are contaminants present in a variety of processed foods, including infant formulas. Toxicological data are unavailable in humans, but rodent studies have demonstrated renal and testicular toxicity from 3-MCPD and 3-MCPD esters. There is evidence that 3-MCPD esters are hydrolyzed in the digestive system, releasing 3-MCPD that would be absorbed and induce damage. We assessed absorption and metabolism of 3-MCPD and three 3-MCPD monoesters, 1-oleoyl (1-Ol), 1-linoleoyl (1-Li) and 1-palmitoyl (1-Pa) commonly found in U.S. infant formula using differentiated Caco-2 cells. After 1-hour incubation, all three monoesters released free 3-MCPD and free fatty acids (FFA) into Caco-2 cell supernatants. Free 3-MCPD had a high apparent permeability (Papp = 30.36 ± 1.31 cm/s × 10-6) suggesting that it is freely diffusible and highly absorbed by intestinal epithelium. 1-Li released 3-4-fold more 3-MCPD than 1-Ol and 1-Pa over 1 h, suggesting that this variable release rates might contribute to the overall in vivo exposure to 3-MCPD. None of the monoesters or FFA were detected in basolateral supernatants, suggesting that these compounds do not cross the intestinal wall without further transformation. In summary, this study provides relevant data to advance knowledge of in vivo intestinal absorption and metabolism of 3-MCPD monoesters.


Assuntos
Ésteres/metabolismo , Absorção Intestinal , alfa-Cloridrina/metabolismo , Biotransformação , Células CACO-2 , Ácidos Graxos não Esterificados/metabolismo , Humanos
3.
Cell Biol Toxicol ; 36(3): 209-221, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31686351

RESUMO

Chloropropanols are chemical contaminants that can be formed during industrial processing of foods, such as lipids used in commercially available infant and toddler formula in the USA. Many researchers have studied the most common chloropropanol contaminant, 3-monochloropropane-1,2-diol (3-MCPD), as well as its lipid ester derivatives. A plethora of toxicological outcomes have been described in vivo, including effects on the heart, nervous system, reproductive organs, and kidneys. To better understand the concordance of some of these effects to in vitro outcomes, we focused our research on using an in vitro cellular model to investigate whether the proximal tubule cells of the kidney would be vulnerable to the effects of free 3-MCPD and nine of its common esters in commercial formula. Using the established human kidney proximal tubule cell line, HK-2, we performed 24-h treatments using 3-MCPD and nine mono- or di-esters derived from palmitate, oleate, and linoleate. By directly exposing HK-2 cells at treatment doses ranging from 0 to 100 µM, we could evaluate their effects on cell viability, mitochondrial health, reactive oxygen species (ROS) production, and other endpoints of toxicity. Since chloropropanols reportedly inhibit cellular metabolism through interference with glycolysis, we also tested the extent of this mechanism. Overall, we found mild but statistically significant evidence of cytotoxicity at the highest tested treatment concentrations, which were also associated with mitochondrial dysfunction and transient perturbations in cellular metabolism. Based on these findings, further studies will be required to better understand the effects of these compounds under conditions that are more physiologically relevant to human infant and toddler proximal tubules in order to mimic their exposure to chloropropanol-containing foods.


Assuntos
Túbulos Renais Proximais/metabolismo , alfa-Cloridrina/toxicidade , Linhagem Celular , Ésteres/farmacologia , Ácidos Graxos , Humanos , Rim/efeitos dos fármacos , Túbulos Renais Proximais/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , alfa-Cloridrina/análogos & derivados
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA