Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Res Sq ; 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37577579

RESUMO

In the context of the Critical Assessment of the Genome Interpretation, 6th edition (CAGI6), the Genetics of Neurodevelopmental Disorders Lab in Padua proposed a new ID-challenge to give the opportunity of developing computational methods for predicting patient's phenotype and the causal variants. Eight research teams and 30 models had access to the phenotype details and real genetic data, based on the sequences of 74 genes (VCF format) in 415 pediatric patients affected by Neurodevelopmental Disorders (NDDs). NDDs are clinically and genetically heterogeneous conditions, with onset in infant age. In this study we evaluate the ability and accuracy of computational methods to predict comorbid phenotypes based on clinical features described in each patient and causal variants. Finally, we asked to develop a method to find new possible genetic causes for patients without a genetic diagnosis. As already done for the CAGI5, seven clinical features (ID, ASD, ataxia, epilepsy, microcephaly, macrocephaly, hypotonia), and variants (causative, putative pathogenic and contributing factors) were provided. Considering the overall clinical manifestation of our cohort, we give out the variant data and phenotypic traits of the 150 patients from CAGI5 ID-Challenge as training and validation for the prediction methods development.

2.
Hum Mutat ; 40(9): 1314-1320, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31140652

RESUMO

Genetics play a key role in venous thromboembolism (VTE) risk, however established risk factors in European populations do not translate to individuals of African descent because of the differences in allele frequencies between populations. As part of the fifth iteration of the Critical Assessment of Genome Interpretation, participants were asked to predict VTE status in exome data from African American subjects. Participants were provided with 103 unlabeled exomes from patients treated with warfarin for non-VTE causes or VTE and asked to predict which disease each subject had been treated for. Given the lack of training data, many participants opted to use unsupervised machine learning methods, clustering the exomes by variation in genes known to be associated with VTE. The best performing method using only VTE related genes achieved an area under the ROC curve of 0.65. Here, we discuss the range of methods used in the prediction of VTE from sequence data and explore some of the difficulties of conducting a challenge with known confounders. In addition, we show that an existing genetic risk score for VTE that was developed in European subjects works well in African Americans.


Assuntos
Sequenciamento do Exoma/métodos , Tromboembolia Venosa/genética , Varfarina/administração & dosagem , Análise por Conglomerados , Biologia Computacional/métodos , Congressos como Assunto , Feminino , Predisposição Genética para Doença , Humanos , Masculino , Curva ROC , Aprendizado de Máquina não Supervisionado , Tromboembolia Venosa/tratamento farmacológico , Varfarina/uso terapêutico
3.
Proteins ; 55(3): 502-7, 2004 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-15103614

RESUMO

Does aqueous solvent discriminate among peptide conformers? To address this question, we computed the solvation free energy of a blocked, 12-residue polyalanyl-peptide in explicit water and analyzed its solvent structure. The peptide was modeled in each of 4 conformers: alpha-helix, antiparallel beta-strand, parallel beta-strand, and polyproline II helix (P(II)). Monte Carlo simulations in the canonical ensemble were performed at 300 K using the CHARMM 22 forcefield with TIP3P water. The simulations indicate that the solvation free energy of P(II) is favored over that of other conformers for reasons that defy conventional explanation. Specifically, in these 4 conformers, an almost perfect correlation is found between a residue's solvent-accessible surface area and the volume of its first solvent shell, but neither quantity is correlated with the observed differences in solvation free energy. Instead, solvation free energy tracks with the interaction energy between the peptide and its first-shell water. An additional, previously unrecognized contribution involves the conformation-dependent perturbation of first-shell solvent organization. Unlike P(II), beta-strands induce formation of entropically disfavored peptide:water bridges that order vicinal water in a manner reminiscent of the hydrophobic effect. The use of explicit water allows us to capture and characterize these dynamic water bridges that form and dissolve during our simulations.


Assuntos
Peptídeos/química , Água/química , Simulação por Computador , Entropia , Modelos Moleculares , Método de Monte Carlo , Dobramento de Proteína , Estrutura Secundária de Proteína , Solventes/química , Termodinâmica
5.
Proteins ; 47(4): 489-95, 2002 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-12001227

RESUMO

LINUS is an ab initio method for the prediction of protein structure based on simple physical principles. Here we report the performance of LINUS at CASP4, a community wide experiment to predict protein structure in which participants are blinded to the structures they seek to predict. We submitted 13 predictions for this experiment. The best four are described in detail, together with an assessment of secondary structure prediction for the entire set. Coordinates for all predictions are available from the CASP web site (http://predictioncenter.llnl.gov). It should be emphasized that our use of the descriptor "ab initio" is unequivocal: the sole input into these simulations is the amino acid sequence.


Assuntos
Estrutura Secundária de Proteína , Proteínas/química , Análise de Sequência de Proteína/métodos , Animais , Modelos Moleculares , Método de Monte Carlo , Dobramento de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA