Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Waste Manag ; 176: 105-116, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38277808

RESUMO

Chemical recycling of complex plastic waste via pyrolysis can reduce fossil resource dependence of the plastics value chain and greenhouse gas emissions. However, economic viability is crucial for its implementation, especially considering challenging waste streams with high shares of engineering plastics that have lower pyrolysis product quality than standard thermoplastics waste. Thus, this study conducts a techno-economic assessment determining the profitability factors of pyrolysis plants for automotive plastic waste in Germany including different plant capacities and calculating cost-covering minimum sales prices for the resulting pyrolysis oil. Main findings are that due to economies of scale, the cost-covering minimum sales prices vary between 1182 €/Mg pyrolysis oil (3750 Mg input/year) and 418 €/Mg pyrolysis oil (100,000 Mg input/year). The pyrolysis technology employed must be robust and scalable to realize these economies of scale. Large plant capacities face challenges such as feedstock availability at reasonable costs, constant feedstock quality, and pyrolysis oil quality, affecting pyrolysis oil pricing. Due to the limited yield and quality of pyrolysis oil produced from these technically demanding feedstocks, policy implications are that additional revenue streams such as gate fees or subsidies that are essential to ensure a positive business case are necessary. Depending on the assessed plant capacity, additional revenues between 720 and 59 €/Mg pyrolysis oil should be realized to be competitive with the price of the reference product heavy fuel oil. Otherwise, the environmental potential of this technology cannot be exploited.


Assuntos
Óleos Combustíveis , Plásticos , Pirólise , Reciclagem , Tecnologia
2.
Int J Mol Sci ; 22(17)2021 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-34502220

RESUMO

Phosphorus (P) is an essential macronutrient, playing a role in developmental and metabolic processes in plants. To understand the local and systemic responses of sorghum to inorganic phosphorus (Pi) starvation and the potential of straw and ash for reutilisation in agriculture, we compared two grain (Razinieh) and sweet (Della) sorghum varieties with respect to their morpho-physiological and molecular responses. We found that Pi starvation increased the elongation of primary roots, the formation of lateral roots, and the accumulation of anthocyanin. In Razinieh, lateral roots were promoted to a higher extent, correlated with a higher expression of SbPht1 phosphate transporters. Infrared spectra of straw from mature plants raised to maturity showed two prominent bands at 1371 and 2337 cm-1, which could be assigned to P-H(H2) stretching vibration in phosphine acid and phosphinothious acid, and their derivates, whose abundance correlated with phosphate uptake of the source plant and genotype (with a higher intensity in Razinieh). The ash generated from these straws stimulated the shoot elongation and root development of the rice seedlings, especially for the material derived from Razinieh raised under Pi starvation. In conclusion, sorghum growing on marginal lands has potential as a bio-economy alternative for mineral phosphorus recycling.


Assuntos
Oryza/crescimento & desenvolvimento , Fósforo/metabolismo , Desenvolvimento Vegetal , Proteínas de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Brotos de Planta/crescimento & desenvolvimento , Sorghum/metabolismo , Regulação da Expressão Gênica de Plantas , Oryza/metabolismo , Proteínas de Transporte de Fosfato/metabolismo , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo , Sorghum/química , Estresse Fisiológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA