Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Environ Sci Technol ; 55(12): 8247-8257, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34081455

RESUMO

Power-to-liquids are a class of liquid drop-in fuels produced from electricity and carbon dioxide as the primary process inputs, which have the potential to reduce transportation's climate impacts. We quantify the economic and life cycle environmental characteristics of four electrofuel technology pathways that rely on the Fischer-Tropsch synthesis but produce synthesis gas via different schemes: power-to-liquid (PtL) via electrolysis and a reverse water gas shift (RWGS) reaction; PtL via co-electrolysis; gasification of biomass-to-liquid (BtL); and a hybrid power- and biomass-to-liquid (PBtL) pathway. The results indicate that the hybrid PBtL pathway is the most environmentally and economically promising option for electrofuel production, with results highly dependent on input electricity source characteristics such as cost and emissions. The carbon intensities of electricity generation that must not be exceeded for electrofuels to have lower life cycle emissions than conventional diesel are 222, 116, and 143 gCO2e/kWh for PBtL, PtL electrolysis + RWGS, and PtL co-electrolysis, respectively. We characterize the PBtL pathway in more detail by combining spatially resolved data on biomass cultivation, electricity generation, and cost-optimized hydrogen production from renewable electricity in the United States (US). We find that the private emissions abatement cost for PBtL fuels varies between 740 and 2000 $/tCO2e, depending primarily on the location of fuel production.


Assuntos
Dióxido de Carbono , Eletricidade , Biomassa , Eletrólise , Estados Unidos
2.
Environ Sci Technol ; 52(21): 12055-12065, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30289698

RESUMO

This paper quantifies and compares the life cycle GHG emissions and costs of production of diesel and jet fuel derived from municipal solid waste (MSW) in the United States via three thermochemical conversion pathways: conventional gasification and Fischer-Tropsch (FT middle distillate, MD), plasma gasification and Fischer-Tropsch (Plasma FT MD), and conventional gasification, catalytic alcohol synthesis, and alcohol-to-jet upgrading (ATJ MD). We use expanded system boundaries to capture the change in existing MSW use and disposal, and account for parameter uncertainty with Monte Carlo simulations. We estimate median life cycle GHG emissions of 32.9, 62.3, and 52.7 gCO2e/MJ for FT, Plasma FT and ATJ MD fuels, respectively, compared to a baseline of 90 gCO2e/MJ for conventional MD fuels. Median minimum selling prices are estimated at 0.99, 1.78, and 1.20 $ per liter with the probability of achieving a positive net present value of fuel production at market prices of 14%, 0.1% and 7% for FT, Plasma FT and ATJ MD fuels, respectively. If the societal perspective rather than an investor's perspective is evaluated, then the probability of positive net present value of fuel production increases to 93%, 67%, and 92.5% for the FT, Plasma FT, and ATJ MD fuels, respectively.


Assuntos
Gases de Efeito Estufa , Resíduos Sólidos , Custos e Análise de Custo , Efeito Estufa , Incerteza , Estados Unidos
3.
Biotechnol Biofuels ; 10: 18, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28115990

RESUMO

BACKGROUND: Alcohol-to-jet (ATJ) is one of the technical feasible biofuel technologies. It produces jet fuel from sugary, starchy, and lignocellulosic biomass, such as sugarcane, corn grain, and switchgrass, via fermentation of sugars to ethanol or other alcohols. This study assesses the ATJ biofuel production pathway for these three biomass feedstocks, and advances existing techno-economic analyses of biofuels in three ways. First, we incorporate technical uncertainty for all by-products and co-products though statistical linkages between conversion efficiencies and input and output levels. Second, future price uncertainty is based on case-by-case time-series estimation, and a local sensitivity analysis is conducted with respect to each uncertain variable. Third, breakeven price distributions are developed to communicate the inherent uncertainty in breakeven price. This research also considers uncertainties in utility input requirements, fuel and by-product outputs, as well as price uncertainties for all major inputs, products, and co-products. All analyses are done from the perspective of a private firm. RESULTS: The stochastic dominance results of net present values (NPV) and breakeven price distributions show that sugarcane is the lowest cost feedstock over the entire range of uncertainty with the least risks, followed by corn grain and switchgrass, with the mean breakeven jet fuel prices being $0.96/L ($3.65/gal), $1.01/L ($3.84/gal), and $1.38/L ($5.21/gal), respectively. The variation of revenues from by-products in corn grain pathway can significantly impact its profitability. Sensitivity analyses show that technical uncertainty significantly impacts breakeven price and NPV distributions. CONCLUSIONS: Technical uncertainty is critical in determining the economic performance of the ATJ fuel pathway. Technical uncertainty needs to be considered in future economic analyses. The variation of revenues from by-products plays a significant role in profitability. With the distribution of breakeven prices, potential investors can apply whatever risk preferences they like to determine an appropriate bid or breakeven price that matches their risk profile.

4.
Bioresour Technol ; 227: 179-187, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28024195

RESUMO

This study quantifies and compares the costs of production for six alternative jet fuel pathways using consistent financial and technical assumptions. Uncertainty was propagated through the analysis using Monte Carlo simulations. The six processes assessed were HEFA, advanced fermentation, Fischer-Tropsch, aqueous phase processing, hydrothermal liquefaction, and fast pyrolysis. The results indicate that none of the six processes would be profitable in the absence of government incentives, with HEFA using yellow grease, HEFA using tallow, and FT revealing the lowest mean jet fuel prices at $0.91/liter ($0.66/liter-$1.24/liter), $1.06/liter ($0.79/liter-$1.42/liter), and $1.15/liter ($0.95/liter-$1.39/liter), respectively. This study also quantifies plant performance in the United States with a Renewable Fuel Standard policy analysis. Results indicate that some pathways could achieve positive NPV with relatively high likelihood under existing policy supports, with HEFA and FPH revealing the highest probability of positive NPV at 94.9% and 99.7%, respectively, in the best-case scenario.


Assuntos
Biocombustíveis/economia , Custos e Análise de Custo , Hidrocarbonetos/economia , Políticas , Probabilidade , Processos Estocásticos , Incerteza
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA