Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
BMC Med Genomics ; 12(1): 173, 2019 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-31775751

RESUMO

BACKGROUND: Assess process, uptake, validity and resource needs for return of actionable research findings to biobank participants. METHODS: Participants were prospectively enrolled in a multicenter biorepository of childhood onset heart disease. Clinically actionable research findings were reviewed by a Return of Research Results Committee (RRR) and returned to the physician or disclosed directly to the participant through a research genetic counselor. Action taken following receipt of this information was reviewed. RESULTS: Genetic data was generated in 1963 of 7408 participants. Fifty-nine new findings were presented to the RRR committee; 20 (34%) were deemed reportable. Twelve were returned to the physician, of which 7 were disclosed to participants (median time to disclosure, 192 days). Seven findings were returned to the research genetic counselor; all have been disclosed (median time to disclosure, 19 days). Twelve families (86%) opted for referral to clinical genetics after disclosure of findings; 7 results have been validated, 5 results are pending. Average cost of return and disclosure per reportable finding incurred by the research program was $750 when utilizing a research genetic counselor; clinical costs associated with return were not included. CONCLUSIONS: Return of actionable research findings was faster if disclosed directly to the participant by a research genetic counselor. There was a high acceptability amongst participants for receiving the findings, for referral to clinical genetics, and for clinical validation of research findings, with all referred cases being clinically confirmed.


Assuntos
Bases de Dados Factuais , Genômica/métodos , Pediatria , Custos e Análise de Custo , Humanos
2.
J Med Genet ; 55(4): 215-221, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29496978

RESUMO

BACKGROUND: The aim of this guideline is to provide updated recommendations for Canadian genetic counsellors, medical geneticists, maternal fetal medicine specialists, clinical laboratory geneticists and other practitioners regarding the use of chromosomal microarray analysis (CMA) for prenatal diagnosis. This guideline replaces the 2011 Society of Obstetricians and Gynaecologists of Canada (SOGC)-Canadian College of Medical Geneticists (CCMG) Joint Technical Update. METHODS: A multidisciplinary group consisting of medical geneticists, genetic counsellors, maternal fetal medicine specialists and clinical laboratory geneticists was assembled to review existing literature and guidelines for use of CMA in prenatal care and to make recommendations relevant to the Canadian context. The statement was circulated for comment to the CCMG membership-at-large for feedback and, following incorporation of feedback, was approved by the CCMG Board of Directors on 5 June 2017 and the SOGC Board of Directors on 19 June 2017. RESULTS AND CONCLUSIONS: Recommendations include but are not limited to: (1) CMA should be offered following a normal rapid aneuploidy screen when multiple fetal malformations are detected (II-1A) or for nuchal translucency (NT) ≥3.5 mm (II-2B) (recommendation 1); (2) a professional with expertise in prenatal chromosomal microarray analysis should provide genetic counselling to obtain informed consent, discuss the limitations of the methodology, obtain the parental decisions for return of incidental findings (II-2A) (recommendation 4) and provide post-test counselling for reporting of test results (III-A) (recommendation 9); (3) the resolution of chromosomal microarray analysis should be similar to postnatal microarray platforms to ensure small pathogenic variants are detected. To minimise the reporting of uncertain findings, it is recommended that variants of unknown significance (VOUS) smaller than 500 Kb deletion or 1 Mb duplication not be routinely reported in the prenatal context. Additionally, VOUS above these cut-offs should only be reported if there is significant supporting evidence that deletion or duplication of the region may be pathogenic (III-B) (recommendation 5); (4) secondary findings associated with a medically actionable disorder with childhood onset should be reported, whereas variants associated with adult-onset conditions should not be reported unless requested by the parents or disclosure can prevent serious harm to family members (III-A) (recommendation 8).The working group recognises that there is variability across Canada in delivery of prenatal testing, and these recommendations were developed to promote consistency and provide a minimum standard for all provinces and territories across the country (recommendation 9).


Assuntos
Aconselhamento Genético , Guias de Prática Clínica como Assunto , Diagnóstico Pré-Natal/métodos , Natimorto , Criança , Feminino , Feto/fisiopatologia , Testes Genéticos , Humanos , Gravidez , Cuidado Pré-Natal
3.
Genet Med ; 19(11): 1268-1275, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28471434

RESUMO

PurposeWhole-exome (WES) and whole-genome sequencing (WGS) increase the diagnostic yield in autism spectrum disorder (ASD) compared to chromosomal microarray (CMA), but there have been no comprehensive cost analyses. The objective was to perform such an assessment of CMA, WES, and WGS and compare the incremental cost per additional positive finding in hypothetical testing scenarios.MethodsFive-year patient and program costs were estimated from an institutional perspective. WES and WGS estimates were based on HiSeq 2500 with an additional WGS estimate for HiSeq X platforms. Parameter uncertainty was assessed with probabilistic and deterministic sensitivity analysis.ResultsThe cost per ASD sample was CAD$1,655 (95% CI: 1,611; 1,699) for WES, CAD$2,851 (95% CI: 2,750; 2,956) for WGS on HiSeq X, and CAD$5,519 (95% CI: 5,244; 5,785) on HiSeq 2500, compared to CAD$744 (95% CI 714, 773) for CMA. The incremental cost was over CAD$25,000 per additional positive finding if CMA was replaced by newer technology.ConclusionWhile costs for WES and WGS remain high, future reductions in material and equipment costs, and increased understanding of newly discovered variants and variants of unknown significance will lead to improved value.


Assuntos
Transtorno do Espectro Autista/genética , Sequenciamento do Exoma , Análise em Microsséries/economia , Sequenciamento Completo do Genoma/economia , Transtorno do Espectro Autista/diagnóstico , Transtorno do Espectro Autista/economia , Cromossomos Humanos , Custos e Análise de Custo , Genoma Humano , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA