Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 4462, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36932122

RESUMO

Experimental in-vivo animal models are key tools to investigate the pathogenesis of lung disease and to discover new therapeutics. Histopathological and biochemical investigations of explanted lung tissue are currently considered the gold standard, but they provide space-localized information and are not amenable to longitudinal studies in individual animals. Here, we present an imaging procedure that uses micro-CT to extract morpho-functional indicators of lung pathology in a murine model of lung fibrosis. We quantified the decrease of lung ventilation and measured the antifibrotic effect of Nintedanib. A robust structure-function relationship was revealed by cumulative data correlating micro-CT with histomorphometric endpoints. The results highlight the potential of in-vivo micro-CT biomarkers as novel tools to monitor the progression of inflammatory and fibrotic lung disease and to shed light on the mechanism of action of candidate drugs. Our platform is also expected to streamline translation from preclinical studies to human patients.


Assuntos
Fibrose Pulmonar , Humanos , Animais , Camundongos , Fibrose Pulmonar/diagnóstico por imagem , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/patologia , Microtomografia por Raio-X/métodos , Modelos Animais de Doenças , Pulmão/patologia , Biomarcadores , Fibrose
2.
J Vis Exp ; (134)2018 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-29708527

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a fatal lung disease characterized by the progressive and irreversible destruction of lung architecture, which causes significant deterioration in lung function and subsequent death from respiratory failure. The pathogenesis of IPF in experimental animal models has been induced by bleomycin administration. In this study, we investigate an IPF-like mouse model induced by a double intratracheal bleomycin instillation. Standard histological assessments used for studying lung fibrosis are invasive terminal procedures. The goal of this work is to monitor lung fibrosis through noninvasive imaging techniques such as Fluorescent Molecular Tomography (FMT) and Micro-CT. These two technologies validated with histology findings could represent a revolutionary functional approach for real time non-invasive monitoring of IPF disease severity and progression. The fusion of different approaches represents a step further for understanding the IPF disease, where the molecular events occurring in a pathological condition can be observed with FMT and the subsequent anatomical changes can be monitored by Micro-CT.


Assuntos
Bleomicina/efeitos adversos , Pulmão/patologia , Imagem Multimodal/métodos , Fibrose Pulmonar/induzido quimicamente , Tomografia Computadorizada por Raios X/métodos , Animais , Técnicas de Cultura de Células , Modelos Animais de Doenças , Progressão da Doença , Fluorescência , Estudos Longitudinais , Camundongos , Fibrose Pulmonar/patologia , Microtomografia por Raio-X/métodos
3.
Artigo em Inglês | MEDLINE | ID: mdl-28400960

RESUMO

BACKGROUND: The intratracheal instillation of bleomycin in mice induces early damage to alveolar epithelial cells and development of inflammation followed by fibrotic tissue changes and represents the most widely used model of pulmonary fibrosis to investigate human IPF. Histopathology is the gold standard for assessing lung fibrosis in rodents, however it precludes repeated and longitudinal measurements of disease progression and does not provide information on spatial and temporal distribution of tissue damage. Here we investigated the use of the Micro-CT technique to allow the evaluation of disease onset and progression at different time-points in the mouse bleomycin model of lung fibrosis. Micro-CT was throughout coupled with histological analysis for the validation of the imaging results. METHODS: In bleomycin-instilled and control mice, airways and lung morphology changes were assessed and reconstructed at baseline, 7, 14 and 21 days post-treatment based on Micro-CT images. Ashcroft score, percentage of collagen content and percentage of alveolar air area were detected on lung slides processed by histology and subsequently compared with Micro-CT parameters. RESULTS: Extent (%) of fibrosis measured by Micro-CT correlated with Ashcroft score, the percentage of collagen content and the percentage of alveolar air area (r2 = 0.91; 0.77; 0.94, respectively). Distal airway radius also correlated with the Ashcroft score, the collagen content and alveolar air area percentage (r2 = 0.89; 0.78; 0.98, respectively). CONCLUSIONS: Micro-CT data were in good agreement with histological read-outs as micro-CT was able to quantify effectively and non-invasively disease progression longitudinally and to reduce the variability and number of animals used to assess the damage. This suggests that this technique is a powerful tool for understanding experimental pulmonary fibrosis and that its use could translate into a more efficient drug discovery process, also helping to fill the gap between preclinical setting and clinical practice.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA