Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Nucl Cardiol ; 29(3): 1003-1017, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-33094471

RESUMO

BACKGROUND: Cardiac positron emission tomography/magnetic resonance imaging (PET/MRI) can assess various cardiovascular diseases. In this study, we intra-individually compared right (RV) and left ventricular (LV) parameters obtained from dual-tracer PET/MRI scan. METHODS: In 22 patients with coronary heart disease (69 ± 9 years) dynamic [13N]NH3 (NH3) and [18F]FDG (FDG) PET scans were acquired. The first 2 minutes were used to calculate LV and RV first-pass ejection fraction (FPEF). Additionally, LV end-systolic (LVESV) and end-diastolic (LVEDV) volume and ejection fraction (LVEF) were calculated from the early (EP) and late-myocardial phases (LP). MRI served as a reference. RESULTS: RVFPEF and LVFPEF from FDG and NH3 as well as RVEF and LVEF from MRI were (28 ± 11%, 32 ± 15%), (32 ± 11%, 41 ± 14%) and (42 ± 16%, 45 ± 19%), respectively. LVESV, LVEDV and LVEF from EP FDG and NH3 in 8 and 16 gates were [71 (15 to 213 mL), 98 (16 to 241 mL), 32 ± 17%] and [50 (17 to 206 mL), 93 (13 to 219 mL), 36 ± 17%] as well as [60 (19 to 360 mL), 109 (56 to 384 mL), 41 ± 22%] and [54 (16 to 371 mL), 116 (57 to 431 mL), 46 ± 24%], respectively. Moreover, LVESV, LVEDV and LVEF acquired from LP FDG and NH3 were (85 ± 63 mL, 138 ± 63 mL, 47 ± 19%) and (79 ± 56 mL, 137 ± 63 mL, 47 ± 20%), respectively. The LVESV, LVEDV from MRI were 93 ± 66 mL and 153 ± 71 mL, respectively. Significant correlations were observed for RVFPEF and LVFPEF between FDG and MRI (R = .51, P = .01; R = .64, P = .001), respectively. LVESV, LVEDV, and LVEF revealed moderate to strong correlations to MRI when they acquired from EP FDG and NH3 in 16 gates (all R > .7, P = .000). Similarly, all LV parameters from LP FDG and NH3 correlated good to strongly positive with MRI (all R > .7, and P < .001), except EDV from NH3 weakly correlated to EDV of MRI (R = .54, P < .05). Generally, Bland-Altman plots showed good agreements between PET and MRI. CONCLUSIONS: Deriving LV and RV functional values from various phases of dynamic NH3 and FDG PET is feasible. These results could open a new perspective for further clinical applications of the PET examinations.


Assuntos
Doença da Artéria Coronariana , Fluordesoxiglucose F18 , Humanos , Imageamento por Ressonância Magnética/métodos , Tomografia por Emissão de Pósitrons/métodos , Volume Sistólico , Tomografia Computadorizada por Raios X
2.
Acad Radiol ; 27(2): 188-197, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31053482

RESUMO

RATIONALE AND OBJECTIVES: Hybrid positron emission tomography-magnetic resonance (PET-MR) is a novel imaging technology that enables a comprehensive assessment of myocardial viability. The aim of this study was to intra-individually compare simultaneously acquired viability parameters from MRI and PET to determine complementary and redundant information. MATERIALS AND METHODS: Thirty-nine patients with ischemic heart disease (IHD) underwent cardiac PET-MR for myocardial viability assessment. Cardiac magnetic resonance (CMR), including late gadolinium enhancement (LGE), and PET, including a dynamic dual-tracer acquisition of [13N]ammonia ([13N]NH3)/[18F]fluorodeoxyglucose ([18F]FDG), were performed simultaneously. Allocation, extent, and transmural degree of left ventricular (LV) scars were measured from LGE. Perfusion, viability, and hibernation were assessed by PET. RESULTS: A comparison of scar location revealed six more areas of infarction on MR than on PET. Mean LV scarring by CMR was 14% (range, 2% to 42%) and 14% (range, 1% to 46%) by PET (CMR vs. PET: p = 0.9). An intra-individual comparison of scarring showed a good inter-method correlation (r = 0.7), which was also evident in the subgroup with low ejection fraction (EF) (r = 0.6). Hibernation and transmural degree of scars showed a moderate to weak correlation (r = 0.4), which was even worse in the low EF group (r = 0.1). CONCLUSIONS: In patients with IHD, there was a good correlation between PET and CMR for the LV scar extent using hybrid cardiac PET-MR. The degree of transmural scarring by CMR showed no correlation to PET hibernation. Therefore, cardiac PET-MR might be a suitable tool for a comprehensive assessment of myocardial viability if used to predict response to cardiac reperfusion strategies.


Assuntos
Cicatriz , Isquemia Miocárdica , Cicatriz/diagnóstico por imagem , Meios de Contraste , Gadolínio , Humanos , Imageamento por Ressonância Magnética , Isquemia Miocárdica/diagnóstico por imagem , Tomografia por Emissão de Pósitrons , Função Ventricular Esquerda
3.
J Nucl Cardiol ; 26(4): 1107-1118, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-29168158

RESUMO

OBJECTIVE: To evaluate the frequency of artifacts in MR-based attenuation correction (AC) maps and their impact on the quantitative accuracy of PET-based flow and metabolism measurements in a cohort of consecutive heart failure patients undergoing combined PET/MR imaging. METHODS: Myocardial viability studies were performed in 20 patients following a dual-tracer protocol involving the assessment of myocardial perfusion (13N-NH3: 813 ± 86 MBq) and metabolism (18F-FDG: 335 ± 38 MBq). All acquisitions were performed using a fully-integrated PET/MR system, with standard DIXON-attenuation correction (DIXON-AC) mapping for each PET scan. All AC maps were examined for spatial misalignment with the emission data, total lung volume, susceptibility artifacts, and tissue inversion (TI). Misalignment and susceptibility artifacts were corrected using rigid co-registration and retrospective filling of the susceptibility-induced gaps, respectively. The effects of the AC artifacts were evaluated by relative difference measures and perceived changes in clinical interpretations. RESULTS: Average respiratory misalignment of (7 ± 4) mm of the PET-emission data and the AC maps was observed in 18 (90%) patients. Substantial changes in the lung volumes of the AC maps were observed in the test-retest analysis (ratio: 1.0 ± 0.2, range: 0.8-1.4). Susceptibility artifacts were observed in 10 (50%) patients, while six (30%) patients had TI artifacts. Average differences of 14 ± 10% were observed for PET images reconstructed with the artifactual AC maps. The combined artifact effects caused false-positive findings in three (15%) patients. CONCLUSION: Standard DIXON-AC maps must be examined carefully for artifacts and misalignment effects prior to AC correction of cardiac PET/MRI studies in order to avoid misinterpretation of biased perfusion and metabolism readings from the PET data.


Assuntos
Coração/diagnóstico por imagem , Imageamento por Ressonância Magnética , Tomografia por Emissão de Pósitrons , Idoso , Idoso de 80 Anos ou mais , Algoritmos , Artefatos , Feminino , Fluordesoxiglucose F18 , Insuficiência Cardíaca , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Pessoa de Meia-Idade , Imagem Multimodal , Imagem de Perfusão do Miocárdio , Miocárdio/patologia , Distribuição Normal , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA