Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Pest Manag Sci ; 66(7): 786-93, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20309850

RESUMO

BACKGROUND: This project assessed the potential hazards of different classical and novel acaricides against an important non-target and beneficial insect for the pollination of wild flowers and cultivated crops, the bumblebee Bombus terrestris (L). Twenty-three acaricides used commercially in the control of phytophagous mites (Acari) were tested in greenhouses and/or the open field. Side effects included acute mortality and also sublethal effects on nest reproduction. The different compounds were administered in the laboratory via three different worst-case field scenario routes of exposure: dermal contact and orally via the drinking of treated sugar water and via treated pollen. The compounds were tested at their respective maximum field recommended concentration (MFRC), and, when strong lethal effects were observed, a dose-response assay with a dilution series of the MFRC was undertaken to calculate LC(50) values. RESULTS: From the different acaricide classes, several chemistries caused high levels of acute toxicity in bumblebee workers, especially bifenthrin and abamectin which resulted in 100% mortality by contact. In addition, several acaricides tested were found to have a detrimental effect on drone production. For oral exposures via treated sugar water, the dose-response assay showed the LC(50) values for abamectin, bifenazate, bifenthrin and etoxazole to be 1/15 MFRC (1.17 mg AI L(-1)), 1/10 MFRC (9.6 mg AI L(-1)), 1/83 MFRC (0.36 mg AI L(-1)) and 1/13 MFRC (4.4 mg AI L(-1)) respectively, indicating that their use should be carefully evaluated. CONCLUSION: Overall, the results suggest that most of the acaricides tested are compatible with bumblebees, with the exceptions of abamectin, bifenazate, bifenthrin and etoxazole. However, the risks also depended on the type of treatment. As a result, the sugar water treatment seems to present the worst-case situation of exposure, indicating that this approach is suitable for determining the hazards of pesticides against bumblebees. Finally, it is suggested that future tier testing under more field-related conditions is required for a final decision of their risks.


Assuntos
Acaricidas/toxicidade , Abelhas/efeitos dos fármacos , Acaricidas/efeitos adversos , Animais , Abelhas/fisiologia , Laboratórios , Dose Letal Mediana , Masculino , Reprodução/efeitos dos fármacos
2.
Ecotoxicology ; 19(1): 207-15, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19757031

RESUMO

Bombus terrestris bumblebees are important pollinators of wild flowers, and in modern agriculture they are used to guarantee pollination of vegetables and fruits. In the field it is likely that worker bees are exposed to pesticides during foraging. To date, several tests exist to assess lethal and sublethal side-effects of pesticides on bee survival, growth/development and reproduction. Within the context of ecotoxicology and insect physiology, we report the development of a new bioassay to assess the impact of sublethal concentrations on the bumblebee foraging behavior under laboratory conditions. In brief, the experimental setup of this behavior test consists of two artificial nests connected with a tube of about 20 cm and use of queenless micro-colonies of 5 workers. In one nest the worker bees constructed brood, and in the other food (sugar and pollen) was provided. Before exposure, the worker bees were allowed a training to forage for untreated food; afterwards this was replaced by treated food. Using this setup we investigated the effects of sublethal concentrations of the neonicotinoid insecticide imidacloprid, known to negatively affect the foraging behavior of bees. For comparison within the family of neonicotinoid insecticides, we also tested different concentrations of two other neonicotinoids: thiamethoxam and thiacloprid, in the laboratory with the new bioassay. Finally to evaluate the new bioassay, we also tested sublethal concentrations of imidacloprid in the greenhouse with use of queenright colonies of B. terrestris, and here worker bees needed to forage/fly for food that was placed at a distance of 3 m from their hives. In general, the experiments showed that concentrations that may be considered safe for bumblebees can have a negative influence on their foraging behavior. Therefore it is recommended that behavior tests should be included in risk assessment tests for highly toxic pesticides because impairment of the foraging behavior can result in a decreased pollination, lower reproduction and finally in colony mortality due to a lack of food.


Assuntos
Anabasina/toxicidade , Comportamento Apetitivo/efeitos dos fármacos , Abelhas/efeitos dos fármacos , Inseticidas/toxicidade , Polinização/efeitos dos fármacos , Análise de Variância , Animais , Bioensaio/métodos , Imidazóis/toxicidade , Neonicotinoides , Nitrocompostos/toxicidade , Oxazinas/toxicidade , Piridinas/toxicidade , Medição de Risco , Tiametoxam , Tiazinas/toxicidade , Tiazóis/toxicidade , Testes de Toxicidade Crônica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA