Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
medRxiv ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38766118

RESUMO

Background: Despite monogenic and polygenic contributions to cardiovascular disease (CVD), genetic testing is not widely adopted, and current tests are limited by the breadth of surveyed conditions and interpretation burden. Methods: We developed a comprehensive clinical genome CVD test with semi-automated interpretation. Monogenic conditions and risk alleles were selected based on the strength of disease association and evidence for increased disease risk, respectively. Non-CVD secondary findings genes, pharmacogenomic (PGx) variants and CVD polygenic risk scores (PRS) were assessed for inclusion. Test performance was modeled using 2,594 genomes from the 1000 Genomes Project, and further investigated in 20 previously tested individuals. Results: The CVD genome test is composed of a panel of 215 CVD gene-disease pairs, 35 non-CVD secondary findings genes, 4 risk alleles or genotypes, 10 PGx genes and a PRS for coronary artery disease. Modeling of test performance using samples from the 1000 Genomes Project revealed ~6% of individuals with a monogenic finding in a CVD-associated gene, 6% with a risk allele finding, ~1% with a non-CVD secondary finding, and 93% with CVD-associated PGx variants. Assessment of blinded clinical samples showed complete concordance with prior testing. An average of 4 variants were reviewed per case, with interpretation and reporting time ranging from 9-96 min. Conclusions: A genome sequencing based CVD genetic risk assessment can provide comprehensive genetic disease and genetic risk information to patients with CVD. The semi-automated and limited interpretation burden suggest that this testing approach could be scaled to support population-level initiatives.

2.
Genet Med ; 16(7): 510-5, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24406459

RESUMO

PURPOSE: Sanger sequencing is currently considered the gold standard methodology for clinical molecular diagnostic testing. However, next-generation sequencing has already emerged as a much more efficient means to identify genetic variants within gene panels, the exome, or the genome. We sought to assess the accuracy of next-generation sequencing variant identification in our clinical genomics laboratory with the goal of establishing a quality score threshold for confirmatory Sanger-based testing. METHODS: Confirmation data for reported results from 144 sequential clinical exome-sequencing cases (94 unique variants) and an additional set of 16 variants from comparable research samples were analyzed. RESULTS: Of the 110 total single-nucleotide variants analyzed, 103 variants had a quality score ≥Q500, 103 (100%) of which were confirmed by Sanger sequencing. Of the remaining seven variants with quality scores

Assuntos
Exoma/genética , Genoma Humano/genética , Sequenciamento de Nucleotídeos em Larga Escala/normas , Técnicas de Diagnóstico Molecular/métodos , Polimorfismo de Nucleotídeo Único/genética , Análise de Sequência de DNA/métodos , Genótipo , Humanos , Análise de Sequência de DNA/economia , Estudos de Validação como Assunto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA