Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Tissue Eng Regen Med ; 12(6): 1389-1401, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29701919

RESUMO

Facial nerve injury can cause severe long-term physical and psychological morbidity. There are limited repair options for an acutely transected facial nerve not amenable to primary neurorrhaphy. We hypothesize that a peptide amphiphile nanofiber neurograft may provide the nanostructure necessary to guide organized neural regeneration. Five experimental groups were compared, animals with (1) an intact nerve, (2) following resection of a nerve segment, and following resection and immediate repair with either a (3) autograft (using the resected nerve segment), (4) neurograft, or (5) empty conduit. The buccal branch of the rat facial nerve was directly stimulated with charge balanced biphasic electrical current pulses at different current amplitudes whereas nerve compound action potentials (nCAPs) and electromygraphic responses were recorded. After 8 weeks, the proximal buccal branch was surgically reexposed and electrically evoked nCAPs were recorded for groups 1-5. As expected, the intact nerves required significantly lower current amplitudes to evoke an nCAP than those repaired with the neurograft and autograft nerves. For other electrophysiologic parameters such as latency and maximum nCAP, there was no significant difference between the intact, autograft, and neurograft groups. The resected group had variable responses to electrical stimulation, and the empty tube group was electrically silent. Immunohistochemical analysis and transmission electron microscopy confirmed myelinated neural regeneration. This study demonstrates that the neuroregenerative capability of peptide amphiphile nanofiber neurografts is similar to the current clinical gold standard method of repair and holds potential as an off-the-shelf solution for facial reanimation and potentially peripheral nerve repair.


Assuntos
Fenômenos Eletrofisiológicos , Nervo Facial/fisiopatologia , Nanofibras/química , Regeneração Nervosa/efeitos dos fármacos , Peptídeos/farmacologia , Tensoativos/farmacologia , Potenciais de Ação/efeitos dos fármacos , Animais , Estimulação Elétrica , Eletromiografia , Nervo Facial/efeitos dos fármacos , Nervo Facial/cirurgia , Nervo Facial/ultraestrutura , Feminino , Neurônios Motores/efeitos dos fármacos , Neurônios Motores/ultraestrutura , Nanofibras/ultraestrutura , Ratos Sprague-Dawley
2.
J Am Chem Soc ; 135(16): 6211-9, 2013 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-23574404

RESUMO

We report here the preparation of filamentous virus-like particles by the encapsulation of a linear or circular double-stranded DNA template with preassembled mushroom-shaped nanostructures having a positively charged domain. These nanostructures mimic the capsid proteins of natural filamentous viruses and are formed by self-assembly of coiled-coil peptides conjugated at opposite termini with cationic segments and poly(ethylene glycol) (PEG) chains. We found that a high molecular weight of PEG segments was critical for the formation of monodisperse and uniformly shaped filamentous complexes. It is proposed that electrostatic attachment of the nanostructures with sufficiently long PEG segments generates steric forces that increase the rigidity of the neutralized DNA template. This stiffening counterbalances the natural tendency of the DNA template to condense into toroids or buckle multiple times. The control achieved over both shape and dimensions of the particles offers a strategy to create one-dimensional supramolecular nanostructures of defined length containing nucleic acids.


Assuntos
DNA Viral/química , DNA/química , Peptídeos/química , Vacinas de Partículas Semelhantes a Vírus/química , Algoritmos , Eletroforese em Gel de Poliacrilamida , Peso Molecular , Método de Monte Carlo , Conformação de Ácido Nucleico , Plasmídeos , Polietilenoglicóis/química , Espalhamento de Radiação , Eletricidade Estática , Ultracentrifugação , Raios X
3.
J Phys Chem B ; 112(2): 441-7, 2008 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-18088110

RESUMO

We construct a phase diagram for self-assembling biologically active peptide amphiphiles. The structure and stability of the assemblies are studied as a function of pH and salinity of the solution. The general features of the phase diagram are predicted based on theoretical modeling of the self-assembly process, as well as experimental data, and further experiments are performed to verify and ascertain the boundary locations of the diagram. Depending on solution conditions, the amphiphiles can form cylindrical or spherical micelles, intermediate structures between these, or may not assemble at all. We also demonstrate that changing conditions may result in phase transitions among these structures. This type of phase diagram could be useful in the design of certain supramolecular nanostructures by providing information on the necessary conditions to form them.


Assuntos
Interações Hidrofóbicas e Hidrofílicas , Peptídeos/química , Transição de Fase , Água/química , Sequência de Aminoácidos , Simulação por Computador , Concentração de Íons de Hidrogênio , Modelos Moleculares , Dados de Sequência Molecular , Método de Monte Carlo , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA