Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
AAPS J ; 17(2): 462-73, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25630504

RESUMO

The application of modeling and simulation techniques is increasingly common in preclinical stages of the drug discovery and development process. A survey focusing on preclinical pharmacokinetic/pharmacodynamics (PK/PD) analysis was conducted across pharmaceutical companies that are members of the International Consortium for Quality and Innovation in Pharmaceutical Development. Based on survey responses, ~68% of companies use preclinical PK/PD analysis in all therapeutic areas indicating its broad application. An important goal of preclinical PK/PD analysis in all pharmaceutical companies is for the selection/optimization of doses and/or dose regimens, including prediction of human efficacious doses. Oncology was the therapeutic area with the most PK/PD analysis support and where it showed the most impact. Consistent use of more complex systems pharmacology models and hybrid physiologically based pharmacokinetic models with PK/PD components was less common compared to traditional PK/PD models. Preclinical PK/PD analysis is increasingly being included in regulatory submissions with ~73% of companies including these data to some degree. Most companies (~86%) have seen impact of preclinical PK/PD analyses in drug development. Finally, ~59% of pharmaceutical companies have plans to expand their PK/PD modeling groups over the next 2 years indicating continued growth. The growth of preclinical PK/PD modeling groups in pharmaceutical industry is necessary to establish required resources and skills to further expand use of preclinical PK/PD modeling in a meaningful and impactful manner.


Assuntos
Simulação por Computador , Avaliação Pré-Clínica de Medicamentos/métodos , Indústria Farmacêutica/métodos , Modelos Biológicos , Coleta de Dados , Relação Dose-Resposta a Droga , Desenho de Fármacos , Descoberta de Drogas/métodos , Indústria Farmacêutica/estatística & dados numéricos , Humanos
2.
Mol Pharm ; 1(2): 145-55, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15832511

RESUMO

Penetration of epithelial cells represents the rate-determining step for the absorption of many drugs and pharmaceutical macromolecules such as proteins and nucleic acid therapeutics. While the potential of using cell-penetrating peptides (CPPs) to facilitate absorption has been increasingly recognized, the mechanism of cell penetration and the uptake into certain cells have recently been called into question due to methodological artifacts. Therefore, the objective of this study was to quantitatively assess the ability of RI-Tat-9, a proteolytically stable CPP, to penetrate epithelial cell monolayers. The permeability of RI-Tat-9 with two epithelial cell lines, Madin-Darby canine kidney (MDCK) and Caco-2 cells, was comparable to the leakiness of the respective intact monolayers. Microscopic imaging showed that fluorescence-tagged RI-Tat-9 did not enter these cells, further supporting a paracellular transport mechanism. Although insufficient data were generated in these studies to generalize the observed phenomenon, the entry of RI-Tat-9 into nonepithelial T lymphocytic MT2 cells, possibly by endocytosis, suggested that a cell type-specific barrier might exist that controlled uptake of RI-Tat-9 by cells. Compared to that in MT2 and HeLa cells, the active uptake of the peptide into MDCK monolayers was much slower and showed no dependence of cell energy. Furthermore, the equilibrium binding of RI-Tat-9 to MDCK cells at 0 degrees C was indicative of an interaction with a nonspecific receptor. A correlation between binding density and concentration difference across a leaky separation barrier suggested that repulsion of free peptide molecules by bound peptide molecules at the MDCK monolayer surface may be significant at micromolar concentrations. The results of this study quantitatively show that Tat CPP uptake into two commonly used epithelial cell types is minimal and possibly cell type-specific. Implications for Tat CPP-assisted drug delivery are discussed.


Assuntos
Membrana Celular/metabolismo , Peptídeos/farmacocinética , Urotélio/metabolismo , Animais , Transporte Biológico , Linhagem Celular , Cães , Células HeLa , Humanos , Rim , Microscopia Confocal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA