Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Cancers (Basel) ; 15(11)2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37297002

RESUMO

Cytogenetic assessment in myelofibrosis is essential for risk stratification and patient management. However, an informative karyotype is unavailable in a significant proportion of patients. Optical genome mapping (OGM) is a promising technique that allows for a high-resolution assessment of chromosomal aberrations (structural variants, copy number variants, and loss of heterozygosity) in a single workflow. In this study, peripheral blood samples from a series of 21 myelofibrosis patients were analyzed via OGM. We assessed the clinical impact of the application of OGM for disease risk stratification using the DIPSS-plus, GIPSS, and MIPSS70+v2 prognostic scores compared with the standard-of-care approach. OGM, in combination with NGS, allowed for risk classification in all cases, compared to only 52% when conventional techniques were used. Cases with unsuccessful karyotypes (n = 10) using conventional techniques were fully characterized using OGM. In total, 19 additional cryptic aberrations were identified in 9 out of 21 patients (43%). No alterations were found via OGM in 4/21 patients with previously normal karyotypes. OGM upgraded the risk category for three patients with available karyotypes. This is the first study using OGM in myelofibrosis. Our data support that OGM is a valuable tool that can greatly contribute to improve disease risk stratification in myelofibrosis patients.

2.
Hum Reprod ; 34(8): 1485-1493, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31339993

RESUMO

STUDY QUESTION: Does dexamethasone (DXM) incubation avoid the reintroduction of leukemic malignant cells after ovarian tissue retransplantation in vivo? SUMMARY ANSWER: DXM incubation prior to retransplantation of ovarian tissue does not prevent reintroduction of leukemic cells. WHAT IS KNOWN ALREADY: Retransplantation of cryopreserved ovarian cortex from patients diagnosed with acute lymphoblastic leukemia (ALL) involves a risk of reintroducing malignant cells. DXM treatment is effective at inducing leukemic cell death in vitro. STUDY DESIGN, SIZE, DURATION: This was an experimental study where ovarian cortex fragments from patients with ALL were randomly allocated to incubation with or without DXM (n = 11/group) and grafted to 22 immunodeficient mice for 6 months. In a parallel experiment, 22 immunodeficient mice were injected i.p. with varying amounts of RCH-ACV ALL cells (human leukemia cell line) and maintained for 4 months. PARTICIPANTS/MATERIALS, SETTING, METHODS: Cryopreserved ovarian fragments from patients with ALL were exposed in vitro to 0.4 µM DXM or basal media (control) prior to xenograft into ovariectomized severe combined immunodeficiency (SCID) mice (experiment 1). After 6 months of monitoring, leukemia cell contamination was assessed in ovarian grafts and mouse organs by histology, PCR (presence of mouse mtDNA and absence of p53 were together considered a negative result for the presence of human cells) and detection of immunoglobulin monoclonality and specific ALL markers if present in the patient.In experiment 2, a series of 22 immunodeficient female mice was injected with specific doses of the leukemia cell line RCH-ACV (103 - 5 × 106, n = 4/group) to assess the engraftment competence of the SCID model. MAIN RESULTS AND THE ROLE OF CHANCE: ALL metastatic cells were detected, by PCR, in five DXM-treated and one control human ovarian tissue graft as well as in a control mouse liver, although malignant cell infiltration was not detected by histology in any sample after 6 months. In total, minimal residual disease was present in three DXM-treated and three control mice.RCH-ACV cells were detected in liver and spleen samples after the injection of as little as 103 cells, although only animals receiving 5 × 106 cells developed clinical signs of disease and metastases. LIMITATIONS, REASONS FOR CAUTION: This is an experimental study where the malignant potential of leukemic cells contained in human ovarian tissues has been assessed in immunodeficient mice. WIDER IMPLICATIONS OF THE FINDINGS: These results indicate that DXM incubation prior to retransplantation of ovarian tissue does not prevent reintroduction of leukemic cells. Therefore, caution should be taken in retransplanting ovarian tissue from patients with leukemia until safer systems are developed, as leukemic cells present in ovarian grafts were able to survive, proliferate and migrate after cryopreservation and xenograft. STUDY FUNDING/COMPETING INTEREST(S): Funded by the Regional Valencian Ministry of Education (PROMETEO/2018/137) and by the Spanish Ministry of Economy and Competitiveness (PI16/FIS PI16/01664 and PTQ-16-08222 for S.H. participation). There are no competing interests.


Assuntos
Dexametasona/uso terapêutico , Preservação da Fertilidade/métodos , Ovário/transplante , Leucemia-Linfoma Linfoblástico de Células Precursoras/prevenção & controle , Animais , Criopreservação , Modelos Animais de Doenças , Feminino , Camundongos , Camundongos SCID
3.
Blood ; 128(10): 1408-17, 2016 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-27385790

RESUMO

Chronic myelomonocytic leukemia (CMML) is a myelodysplastic/myeloproliferative neoplasm with variable clinical course. To predict the clinical outcome, we previously developed a CMML-specific prognostic scoring system (CPSS) based on clinical parameters and cytogenetics. In this work, we tested the hypothesis that accounting for gene mutations would further improve risk stratification of CMML patients. We therefore sequenced 38 genes to explore the role of somatic mutations in disease phenotype and clinical outcome. Overall, 199 of 214 (93%) CMML patients carried at least 1 somatic mutation. Stepwise linear regression models showed that these mutations accounted for 15% to 24% of variability of clinical phenotype. Based on multivariable Cox regression analyses, cytogenetic abnormalities and mutations in RUNX1, NRAS, SETBP1, and ASXL1 were independently associated with overall survival (OS). Using these parameters, we defined a genetic score that identified 4 categories with significantly different OS and cumulative incidence of leukemic evolution. In multivariable analyses, genetic score, red blood cell transfusion dependency, white blood cell count, and marrow blasts retained independent prognostic value. These parameters were included into a clinical/molecular CPSS (CPSS-Mol) model that identified 4 risk groups with markedly different median OS (from >144 to 18 months, hazard ratio [HR] = 2.69) and cumulative incidence of leukemic evolution (from 0% to 48% at 4 years, HR = 3.84) (P < .001). The CPSS-Mol fully retained its ability to risk stratify in an independent validation cohort of 260 CMML patients. In conclusion, integrating conventional parameters and gene mutations significantly improves risk stratification of CMML patients, providing a robust basis for clinical decision-making and a reliable tool for clinical trials.


Assuntos
Biomarcadores Tumorais/genética , Aberrações Cromossômicas , Leucemia Mielomonocítica Crônica/genética , Mutação/genética , Medição de Risco/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Tomada de Decisão Clínica , Estudos de Coortes , Feminino , Seguimentos , Humanos , Leucemia Mielomonocítica Crônica/patologia , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Fenótipo , Prognóstico , Fatores de Risco , Taxa de Sobrevida , Adulto Jovem
4.
J Mol Diagn ; 14(6): 594-601, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22929312

RESUMO

Recently, many novel molecular abnormalities were found to be distinctly associated with acute myeloid leukemia (AML). However, their clinical relevance and prognostic implications are not well established. We developed a new combination of high-resolution melting assays on a LightCycler 480 and direct sequencing to detect somatic mutations of ASXL1 (exon 12), IDH1 (exon 4), IDH2 (exon 4), and c-CBL (exons 8 and 9) genes to know their incidence and prognostic effect in a cohort of 175 patients with de novo AML: 16 patients (9%) carried ASXL1 mutations, 16 patients had IDH variations (3% with IDH1(R132) and 6% with IDH2(R140)), and none had c-CBL mutations. Patients with ASXL1 mutations did not harbor IDH1, [corrected] or CEBPA mutations, and a combination of ASXL1 and IDH2 mutations was found only in one patient. In addition, we did not find IDH1 and FLT3 or CEBPA mutations concurrently or IDH2 with CEBPA. IDH1 and IDH2 mutations were mutually exclusive. Alternatively, NPM1 mutations were concurrently found with ASXL1, IDH1, or IDH2 with a variable incidence. Mutations were not significantly correlated with any of the clinical and biological features studied. High-resolution melting is a reliable, rapid, and efficient screening technique for mutation detection in AML. The incidence for the studied genes was in the range of those previously reported. We were unable to find an effect on the outcome.


Assuntos
Testes Genéticos/métodos , Isocitrato Desidrogenase/genética , Leucemia Mieloide Aguda/genética , Mutação , Proteínas Proto-Oncogênicas c-cbl/genética , Proteínas Repressoras/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Coortes , Feminino , Testes Genéticos/economia , Humanos , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/patologia , Masculino , Pessoa de Meia-Idade , Nucleofosmina , Prognóstico , Fatores de Tempo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA