Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Eur J Pharm Sci ; 170: 106103, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34936936

RESUMO

Antibiotic resistance is a major health concern globally and has been estimated to cause 10 million deaths worldwide by year 2050 if the current trend of inappropriate and excessive use of antibiotics continues. Although, the discovery of antibiotics has saved countless of lives for the past 80 years, increasing levels of bacterial resistance to antibiotics would jeopardize the progress in clinical and agricultural sectors and may cause life-threatening situations even for previously treatable bacterial infections. Antibiotic resistance would increase the levels of poverty of low-middle income countries mostly due to extended hospital stays, higher cost of treatment and untimely deaths that directly affect the total productivity rate. Recent incidences of antibiotic resistance have been gradually increasing globally and this may potentiate horizontal transmission of the resistant gene and have been linked with cross-resistance to other antibiotic families as well. This review summarizes the global burden of antibiotic resistance from the economic viewpoint, highlights the recent incidences of antibiotic resistance mainly related to Escherichia coli, Acinetobacter baumannii, Klebsiella pneumoniae, Salmonella spp. and Staphylococcus aureus, describes the common mechanistic actions of antibiotic resistance and potential strategies to overcome antibiotic resistance.


Assuntos
Acinetobacter baumannii , Antibacterianos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Farmacorresistência Bacteriana , Estresse Financeiro , Humanos , Prevalência
2.
Bioresour Technol ; 275: 430-433, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30579775

RESUMO

In the present investigation, several residues from agro-forestry industries such as rice straw acid hydrolysate, corn cob acid hydrolysate, tomato juice, cane molasses and orange pulp were evaluated as the economical source for the production of bacterial cellulose. The bacterial cellulose attained the significant yield of 7.8 g/L using tomato juice, followed by 3.6 g/L using cane molasses and 2.8 g/L using orange pulp after 7 days of incubation. Furthermore, the optimum pH and temperature of fermentation for maximum production of bacterial cellulose was 4.5 and 30 ±â€¯1 °C. The identified bacterium Acetobacter pasteurianus RSV-4 has been deposited at repository under the accession number MTCC 25117. The produced bacterial cellulose was characterized through FTIR, SEM, TGA and DSC and found to be of very good quality. The bacterial cellulose produced by identified strain on these various agro-waste residues could be a cost effective technology for commercial its production.


Assuntos
Acetobacter/metabolismo , Celulose/isolamento & purificação , Celulose/economia , Fermentação , Melaço
3.
Appl Microbiol Biotechnol ; 102(5): 2117-2127, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29404644

RESUMO

Polyhydroxyalkanoate (PHA) is a family of microbial polyesters that is completely biodegradable and possesses the mechanical and thermal properties of some commonly used petrochemical-based plastics. Therefore, PHA is attractive as a biodegradable thermoplastic. It has always been a challenge to commercialize PHA due to the high cost involved in the biosynthesis of PHA via bacterial fermentation and the subsequent purification of the synthesized PHA from bacterial cells. Innovative enterprise by researchers from various disciplines over several decades successfully reduced the cost of PHA production through the efficient use of cheap and renewable feedstock, precisely controlled fermentation process, and customized bacterial strains. Despite the fact that PHA yields have been improved tremendously, the recovery and purification processes of PHA from bacterial cells remain exhaustive and require large amounts of water and high energy input besides some chemicals. In addition, the residual cell biomass ends up as waste that needs to be treated. We have found that some animals can readily feed on the dried bacterial cells that contain PHA granules. The digestive system of the animals is able to assimilate the bacterial cells but not the PHA granules which are excreted in the form of fecal pellets, thus resulting in partial recovery and purification of PHA. In this mini-review, we will discuss this new concept of biological recovery, the selection of the animal model for biological recovery, and the properties and possible applications of the biologically recovered PHA.


Assuntos
Ração Animal/microbiologia , Bactérias/metabolismo , Poli-Hidroxialcanoatos/metabolismo , Resíduos/análise , Ração Animal/análise , Ração Animal/economia , Animais , Bactérias/genética , Biodegradação Ambiental , Biomassa , Digestão , Fermentação , Resíduos/economia
4.
J Biotechnol ; 265: 31-39, 2018 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-29101024

RESUMO

Polyhydroxyalkanoates (PHAs) are produced in microbes as a source of carbon and energy storage. They are biodegradable and have properties similar to synthetic plastics, which make them an interesting alternative to petroleum-based plastics. In this study, a refined method of recovering PHA from Cupriavidus necator biomass was proposed by incorporating the use of the yellow mealworm (the larval phase of the mealworm beetle, Tenebrio molitor) as partial purification machinery, followed by washing of the fecal pellets with distilled water and sodium hydroxide. The PHA contents of the cells used in this study were 55wt% (produced from palm olein) and 60 wt% (produced from waste animal fats). The treatment of distilled water and NaOH further increased the purity of PHA to 94%. In parallel, analysis of the 16S rRNA metagenomic sequencing of the mealworm gut microbiome has revealed remarkable changes in the bacterial diversity, especially between the mealworms fed with cells produced from palm olein and waste animal fats. This biological recovery of PHA from cells is an attempt to move towards a green and sustainable process with the aim of reducing the use of harmful solvents and strong chemicals during polymer purification. The results obtained show that - purities of >90%, without a reduction in the molecular weight, can be obtained through this integrative biological recovery approach. In addition, this study has successfully shown that the cells, regardless of their origins, were readily consumed by the mealworms, and there is a correlation between the feed type and the mealworm gut microbiome.


Assuntos
Cupriavidus necator/metabolismo , Microbioma Gastrointestinal , Poli-Hidroxialcanoatos/biossíntese , Tenebrio/microbiologia , Animais , Fezes/microbiologia , Microbioma Gastrointestinal/genética , Larva/microbiologia , Óleo de Palmeira/metabolismo , RNA Ribossômico 16S/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA