Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
CPT Pharmacometrics Syst Pharmacol ; 12(5): 585-597, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36530026

RESUMO

This report summarizes the proceedings for day 2 sessions 1 and 3 of the 2-day public workshop entitled "Regulatory Utility of Mechanistic Modeling to Support Alternative Bioequivalence Approaches," a jointly sponsored workshop by the US Food and Drug Administration (FDA) and the Center for Research on Complex Generics (CRCG). The aims of this workshop were: (1) to discuss how mechanistic modeling, including physiologically-based pharmacokinetic (PBPK) modeling and simulation, can support product development, and regulatory submissions; (2) to share the current state of mechanistic modeling for bioequivalence (BE) assessment through case studies; (3) to establish a consensus on best practices for using PBPK modeling for BE assessment to help drive further investment by the generic drug industry into mechanistic modeling and simulation; and (4) to introduce the concept of a Model Master File to improve model-sharing. The theme of day 2 covered PBPK absorption model for oral products as an alternative BE approach and a tool for supporting risk assessment and biowaiver (session 1), oral PBPK for evaluating the impact of food on BE (session 2), successful cases, and challenges for oral PBPK (session 3). This report summarizes the topics of the presentations of day 2 sessions 1 and session 3 from FDA, academia, and pharmaceutical industry, including the current status of oral PBPK, case examples as well as the challenges and opportunities in this area. In addition, panel discussions on the utility of oral PBPK in both new drugs and generic drugs from regulatory and industry perspective are also summarized.


Assuntos
Modelos Biológicos , Relatório de Pesquisa , Humanos , Equivalência Terapêutica , Simulação por Computador
2.
Eur J Pharm Sci ; 111: 465-481, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-29030176

RESUMO

Valproic acid (VPA) is an older first-line antiepileptic drug with a complex pharmacokinetic (PK) profile, currently under investigation for several novel neurologic and non-neurologic indications. Our study objective was to design and validate a mechanistic model of VPA disposition in adults and children; and evaluate its predictive performance of drug-drug interactions (DDIs). This study expands upon existing physiologically based pharmacokinetic (PBPK) models for VPA by incorporating UGT enzyme kinetics and an advanced dissolution, absorption, and metabolism (ADAM) model for extended-release (ER) formulation. PBPK models for VPA IR and ER formulations were constructed using Simcyp Simulator (Version 15). First-order absorption was used for the immediate-release (IR) formulation and the ADAM model, including a controlled-release profile, for ER. Data from twenty-one published clinical studies were used to assess model performance. The model accurately predicted the concentration-time profiles of IR formulation for single-dose and steady-state doses ranging from 200mg to 1000mg. Similarly profiles were also simulated for ER formulation after a single-dose and steady-state doses of 500mg and 1000mg, respectively. In addition, simulated PK profiles agreed well with the observed data from studies in which VPA ER formulation was given to pediatric patients and VPA IR formulation to adult patients with cirrhosis. The model was further validated with individual adult data from a Phase I clinical trial consisting of eight cohorts after IV infusion of VPA with doses ranging from 15 to 150mg/kg. Co-administrations of VPA as an enzyme-inhibitor with victim drug phenytoin or lorazepam, as well as a substrate with enzyme inducer carbamazepine or phenobarbital, were simulated with the model to evaluate drug-drug interaction. The simulated serum concentration-time profiles were within the 5th and 95th percentiles, and the majority of the predicted area-under-the-curve (AUC) and peak plasma concentration (Cmax) values were within 25% of the reported average values. The comprehensive VPA PBPK model defined by this study may be used to support dosage regimen optimization to improve the safety and efficacy profile of this agent under different scenarios.


Assuntos
Anticonvulsivantes/farmacocinética , Ácido Valproico/farmacocinética , Anticonvulsivantes/administração & dosagem , Células CACO-2 , Simulação por Computador , Relação Dose-Resposta a Droga , Interações Medicamentosas , Humanos , Modelos Biológicos , Método de Monte Carlo , Distribuição Tecidual , Ácido Valproico/administração & dosagem
3.
AAPS J ; 10(2): 373-9, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18679807

RESUMO

The workshop "Bioequivalence, Biopharmaceutics Classification System, and Beyond" was held May 21-23, 2007 in North Bethesda, MD, USA. This workshop provided an opportunity for pharmaceutical scientists to discuss the FDA guidance on the Biopharmaceutics Classification System (BCS), bioequivalence of oral products, and related FDA initiatives such as the FDA Critical Path Initiative. The objective of this Summary Workshop Report is to document the main points from this workshop. Key highlights of the workshop were (a) the described granting of over a dozen BCS-based biowaivers by the FDA for Class I drugs whose formulations exhibit rapid dissolution, (b) continued scientific support for biowaivers for Class III compounds whose formulations exhibit very rapid dissolution, (c) scientific support for a number of permeability methodologies to assess BCS permeability class, (d) utilization of BCS in pharmaceutical research and development, and (e) scientific progress in in vitro dissolution methods to predict dosage form performance.


Assuntos
Biofarmácia/classificação , Medicamentos Genéricos , Biofarmácia/legislação & jurisprudência , Congressos como Assunto , Desenho de Fármacos , Medicamentos Genéricos/química , Medicamentos Genéricos/classificação , Medicamentos Genéricos/farmacocinética , Humanos , Equivalência Terapêutica , Estados Unidos , United States Food and Drug Administration
4.
Curr Opin Drug Discov Devel ; 7(1): 75-85, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-14982151

RESUMO

Drug 'developability' assessment has become an increasingly important addition to traditional drug efficacy and toxicity evaluations, as pharmaceutical scientists strive to accelerate drug discovery and development processes in a time- and cost-effective manner. The fraction of drug absorbed and the maximum absorbable dose (MAD) can be estimated from in vivo clinical pharmacokinetics, mass balance studies or in vivo drug permeability in humans by different calculation methods. Unfortunately, in vivo data are usually unavailable at the early stages of drug discovery and development, and in vitro screening for the permeability, solubility, activity and toxicity of a drug has become a routine measurement in drug discovery and development. These in vitro data could be used to predict drug 'developability' with different calculation methods before selecting candidates for clinical evaluation. The fraction of drug absorbed in human could be predicted by in vivo human permeability or in vitro Caco2 permeability. For example, if drug permeability in Caco2 cells reaches 13.3 to 18.1 x 10(-6) cm/s, its predicted in vivo permeability in humans would reach 2 x 10(-4) cm/s, and its predicted fraction of drug absorbed would be > 90%, which is defined as highly permeable. The MAD could also be predicted with in vitro permeability, or calculated absorption rate constant. In addition, in vitro solubility and permeability data can also be used for the biopharmaceutics classification system (BCS) and, subsequently, to direct formulation optimization strategies. If drug 'developability' becomes an obstacle for drug delivery based on these in vitro data and predictions at the early stages of drug discovery and development, options such as prodrug approaches could be explored to enhance drug 'developability', in addition to different formulation methods. Therefore, in vitro absorption testing is a highly valuable tool in the decision-making process to select candidates for in vivo clinical studies at early-stage drug discovery and development.


Assuntos
Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos/métodos , Modelos Biológicos , Farmacocinética , Transporte Biológico , Células CACO-2 , Humanos , Técnicas In Vitro , Absorção Intestinal , Permeabilidade , Preparações Farmacêuticas/química , Preparações Farmacêuticas/metabolismo , Pró-Fármacos/química , Pró-Fármacos/farmacocinética , Solubilidade , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA