Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Eur Radiol ; 34(10): 6358-6368, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38683385

RESUMO

OBJECTIVES: To compare the quantitative background parenchymal enhancement (BPE) in women with different lifetime risks and BRCA mutation status of breast cancer using screening MRI. MATERIALS AND METHODS: This study included screening MRI of 535 women divided into three groups based on lifetime risk: nonhigh-risk women, high-risk women without BRCA mutation, and BRCA1/2 mutation carriers. Six quantitative BPE measurements, including percent enhancement (PE) and signal enhancement ratio (SER), were calculated on DCE-MRI after segmentation of the whole breast and fibroglandular tissue (FGT). The associations between lifetime risk factors and BPE were analyzed via linear regression analysis. We adjusted for risk factors influencing BPE using propensity score matching (PSM) and compared the BPE between different groups. A two-sided Mann-Whitney U-test was used to compare the BPE with a threshold of 0.1 for multiple testing issue-adjusted p values. RESULTS: Age, BMI, menopausal status, and FGT level were significantly correlated with quantitative BPE based on the univariate and multivariable linear regression analyses. After adjusting for age, BMI, menopausal status, hormonal treatment history, and FGT level using PSM, significant differences were observed between high-risk non-BRCA and BRCA groups in PEFGT (11.5 vs. 8.0%, adjusted p = 0.018) and SERFGT (7.2 vs. 9.3%, adjusted p = 0.066). CONCLUSION: Quantitative BPE varies in women with different lifetime breast cancer risks and BRCA mutation status. These differences may be due to the influence of multiple lifetime risk factors. Quantitative BPE differences remained between groups with and without BRCA mutations after adjusting for known risk factors associated with BPE. CLINICAL RELEVANCE STATEMENT: BRCA germline mutations may be associated with quantitative background parenchymal enhancement, excluding the effects of known confounding factors. This finding can provide potential insights into the cancer pathophysiological mechanisms behind lifetime risk models. KEY POINTS: Expanding understanding of breast cancer pathophysiology allows for improved risk stratification and optimized screening protocols. Quantitative BPE is significantly associated with lifetime risk factors and differs between BRCA mutation carriers and noncarriers. This research offers a possible understanding of the physiological mechanisms underlying quantitative BPE and BRCA germline mutations.


Assuntos
Neoplasias da Mama , Imageamento por Ressonância Magnética , Humanos , Feminino , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/genética , Imageamento por Ressonância Magnética/métodos , Pessoa de Meia-Idade , Adulto , Fatores de Risco , Detecção Precoce de Câncer/métodos , Idoso , Medição de Risco , Mama/diagnóstico por imagem , Mutação , Meios de Contraste
2.
Am J Perinatol ; 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36241211

RESUMO

OBJECTIVE: The aim of Placental Assessment in Response to Environmental Pollution Study (PARENTs) was to determine whether imaging of the placenta by novel multiparametric magnetic resonance imaging (MRI) techniques in early pregnancy could help predict adverse pregnancy outcomes (APOs) due to ischemic placental disease (IPD). Additionally, we sought to determine maternal characteristics and environmental risk factors that contribute to IPD and secondary APOs. STUDY DESIGN: Potential patients in their first trimester of pregnancy, who agreed to MRI of the placenta and measures of assessment of environmental pollution, were recruited into PARENTs, a prospective population-based cohort study. Participants were seen at three study visits during pregnancy and again at their delivery from 2015 to 2019. We collected data from interviews, chart abstractions, and imaging. Maternal biospecimens (serum, plasma, and urine) at antepartum study visits and delivery specimens (placenta, cord, and maternal blood) were collected, processed, and stored. The primary outcome was a composite of IPD, which included any of the following: placental abruption, hypertensive disease of pregnancy, fetal growth restriction, or a newborn of small for gestational age. RESULTS: In this pilot cohort, of the 190 patients who completed pregnancy to viable delivery, 50 (26%) developed IPD. Among demographic characteristics, having a history of prior IPD in multiparous women was associated with the development of IPD. In the multiple novel perfusion measurements taken of the in vivo placenta using MRI, decreased high placental blood flow (mL/100 g/min) in early pregnancy (between 14 and 16 weeks) was found to be significantly associated with the later development of IPD. CONCLUSION: Successful recruitment of the PARENTs prospective cohort demonstrated the feasibility and acceptability of the use of MRI in human pregnancy to study the placenta in vivo and at the same time collect environmental exposure data. Analysis is ongoing and we hope these methods will assist researchers in the design of prospective imaging studies of pregnancy. KEY POINTS: · MRI was acceptable and feasible for the study of the human placenta in vivo.. · Functional imaging of the placenta by MRI showed a significant decrease in high placental blood flow.. · Measures of environmental exposures are further being analyzed to predict IPD..

3.
Med Phys ; 41(12): 122302, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25471978

RESUMO

PURPOSE: To incorporate a newly developed shape-based motion estimation scheme into magnetic resonance urography (MRU) and verify its efficacy in facilitating quantitative functional analysis. METHODS: The authors propose a motion compensation scheme in MRU that consists of three sequential modules: MRU image acquisition, motion compensation, and quantitative functional analysis. They designed two sets of complementary experiments to evaluate the performance of the proposed method. In the first experiment, dynamic contrast enhanced (DCE) MR images were acquired from three sedated subjects, from which clinically valid estimates were derived and served as the "ground truth." Physiologically sound motion was then simulated to synthesize image sequences influenced by respiratory motion. Quantitative assessment and comparison were performed on functional estimates of Patlak number, glomerular filtration rate, and Patlak differential renal function without and with motion compensation against the ground truth. In the second experiment, the authors acquired a temporal series of noncontrast MR images under free breathing from a healthy adult subject. The performance of the proposed method on compensating real motion was evaluated by comparing the standard deviation of the obtained temporal intensity curves before and after motion compensation. RESULTS: On DCE-MR images with simulated motion, the generated relative enhancement curves exhibited large perturbations and the Patlak numbers of the left and right kidney were significantly underestimated up to 35% and 34%, respectively, compared with the ground truth. After motion compensation, the relative enhancement curves exhibited much less perturbations and Patlak estimation errors reduced within 3% and 4% for the left and right kidneys, respectively. On clinical free-breathing MR images, the temporal intensity curves exhibited significantly reduced variations after motion compensation, with standard deviation decreased from 30.3 and 38.2 to 8.3 and 11.7 within two manually selected regions of interest, respectively. CONCLUSIONS: The developed motion compensation method has demonstrated its ability to facilitate quantitative MRU functional analysis, with improved accuracy of pharmacokinetic modeling and quantitative parameter estimations. Future work will consider performing more intensive clinical verifications with sophisticated pharmacokinetic models and generalizing the proposed method to other quantitative DCE analysis, such as on liver or prostate function.


Assuntos
Testes de Função Renal/métodos , Imageamento por Ressonância Magnética/métodos , Adulto , Fenômenos Biofísicos , Meios de Contraste , Gadolínio DTPA , Taxa de Filtração Glomerular , Humanos , Interpretação de Imagem Assistida por Computador , Rim/anatomia & histologia , Rim/fisiologia , Testes de Função Renal/estatística & dados numéricos , Imageamento por Ressonância Magnética/estatística & dados numéricos , Masculino , Movimento (Física)
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA