Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
ArXiv ; 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38463511

RESUMO

Joint modeling of diffusion and relaxation has seen growing interest due to its potential to provide complementary information about tissue microstructure. For brain white matter, we designed an optimal diffusion-relaxometry MRI protocol that samples multiple b-values, B-tensor shapes, and echo times (TE). This variable-TE protocol (27 min) has as subsets a fixed-TE protocol (15 min) and a 2-shell dMRI protocol (7 min), both characterizing diffusion only. We assessed the sensitivity, specificity and reproducibility of these protocols with synthetic experiments and in six healthy volunteers. Compared with the fixed-TE protocol, the variable-TE protocol enables estimation of free water fractions while also capturing compartmental T2 relaxation times. Jointly measuring diffusion and relaxation offers increased sensitivity and specificity to microstructure parameters in brain white matter with voxelwise coefficients of variation below 10%.

2.
Neuroimage ; 242: 118445, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34375753

RESUMO

Microscopic diffusion anisotropy imaging using diffusion-weighted MRI and multidimensional diffusion encoding is a promising method for quantifying clinically and scientifically relevant microstructural properties of neural tissue. Several methods for estimating microscopic fractional anisotropy (µFA), a normalized measure of microscopic diffusion anisotropy, have been introduced but the differences between the methods have received little attention thus far. In this study, the accuracy and precision of µFA estimation using q-space trajectory encoding and different signal models were assessed using imaging experiments and simulations. Three healthy volunteers and a microfibre phantom were imaged with five non-zero b-values and gradient waveforms encoding linear and spherical b-tensors. Since the ground-truth µFA was unknown in the imaging experiments, Monte Carlo random walk simulations were performed using axon-mimicking fibres for which the ground truth was known. Furthermore, parameter bias due to time-dependent diffusion was quantified by repeating the simulations with tuned waveforms, which have similar power spectra, and with triple diffusion encoding, which, unlike q-space trajectory encoding, is not based on the assumption of time-independent diffusion. The truncated cumulant expansion of the powder-averaged signal, gamma-distributed diffusivities assumption, and q-space trajectory imaging, a generalization of the truncated cumulant expansion to individual signals, were used to estimate µFA. The gamma-distributed diffusivities assumption consistently resulted in greater µFA values than the second order cumulant expansion, 0.1 greater when averaged over the whole brain. In the simulations, the generalized cumulant expansion provided the most accurate estimates. Importantly, although time-dependent diffusion caused significant overestimation of µFA using all the studied methods, the simulations suggest that the resulting bias in µFA is less than 0.1 in human white matter.


Assuntos
Anisotropia , Encéfalo/diagnóstico por imagem , Imagem de Tensor de Difusão/instrumentação , Adulto , Feminino , Humanos , Processamento de Imagem Assistida por Computador/instrumentação , Masculino , Método de Monte Carlo , Imagens de Fantasmas , Substância Branca/diagnóstico por imagem
3.
Invest Radiol ; 56(12): 845-853, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34049334

RESUMO

OBJECTIVES: The objectives of this exploratory study were to investigate the feasibility of multidimensional diffusion magnetic resonance imaging (MddMRI) in assessing diffusion heterogeneity at both a macroscopic and microscopic level in prostate cancer (PCa). MATERIALS AND METHODS: Informed consent was obtained from 46 subjects who underwent 3.0-T prostate multiparametric MRI, complemented with a prototype spin echo-based MddMRI sequence in this institutional review board-approved study. Prostate cancer tumors and comparative normal tissue from each patient were contoured on both apparent diffusion coefficient and MddMRI-derived mean diffusivity (MD) maps (from which microscopic diffusion heterogeneity [MKi] and microscopic diffusion anisotropy were derived) using 3D Slicer. The discriminative ability of MddMRI-derived parameters to differentiate PCa from normal tissue was determined using the Friedman test. To determine if tumor diffusion heterogeneity is similar on macroscopic and microscopic scales, the linear association between SD of MD and mean MKi was estimated using robust regression (bisquare weighting). Hypothesis testing was 2 tailed; P values less than 0.05 were considered statistically significant. RESULTS: All MddMRI-derived parameters could distinguish tumor from normal tissue in the fixed-effects analysis (P < 0.0001). Tumor MKi was higher (P < 0.05) compared with normal tissue (median, 0.40; interquartile range, 0.29-0.52 vs 0.20-0.18; 0.25), as was tumor microscopic diffusion anisotropy (0.55; 0.36-0.81 vs 0.20-0.15; 0.28). The MKi could not be predicted (no significant association) by SD of MD. There was a significant correlation between tumor volume and SD of MD (R2 = 0.50, slope = 0.008 µm2/ms per millimeter, P < 0.001) but not between tumor volume and MKi. CONCLUSIONS: This explorative study demonstrates that MddMRI provides novel information on MKi and microscopic anisotropy, which differ from measures at the macroscopic level. MddMRI has the potential to characterize tumor tissue heterogeneity at different spatial scales.


Assuntos
Imagem de Tensor de Difusão , Neoplasias da Próstata , Anisotropia , Imagem de Difusão por Ressonância Magnética/métodos , Imagem de Tensor de Difusão/métodos , Humanos , Masculino , Projetos Piloto , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/patologia
4.
Hum Brain Mapp ; 42(2): 310-328, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33022844

RESUMO

Diffusion MRI techniques are used widely to study the characteristics of the human brain connectome in vivo. However, to resolve and characterise white matter (WM) fibres in heterogeneous MRI voxels remains a challenging problem typically approached with signal models that rely on prior information and constraints. We have recently introduced a 5D relaxation-diffusion correlation framework wherein multidimensional diffusion encoding strategies are used to acquire data at multiple echo-times to increase the amount of information encoded into the signal and ease the constraints needed for signal inversion. Nonparametric Monte Carlo inversion of the resulting datasets yields 5D relaxation-diffusion distributions where contributions from different sub-voxel tissue environments are separated with minimal assumptions on their microscopic properties. Here, we build on the 5D correlation approach to derive fibre-specific metrics that can be mapped throughout the imaged brain volume. Distribution components ascribed to fibrous tissues are resolved, and subsequently mapped to a dense mesh of overlapping orientation bins to define a smooth orientation distribution function (ODF). Moreover, relaxation and diffusion measures are correlated to each independent ODF coordinate, thereby allowing the estimation of orientation-specific relaxation rates and diffusivities. The proposed method is tested on a healthy volunteer, where the estimated ODFs were observed to capture major WM tracts, resolve fibre crossings, and, more importantly, inform on the relaxation and diffusion features along with distinct fibre bundles. If combined with fibre-tracking algorithms, the methodology presented in this work has potential for increasing the depth of characterisation of microstructural properties along individual WM pathways.


Assuntos
Algoritmos , Encéfalo/diagnóstico por imagem , Simulação por Computador , Imagem de Difusão por Ressonância Magnética/métodos , Substância Branca/diagnóstico por imagem , Encéfalo/fisiologia , Bases de Dados Factuais , Humanos , Método de Monte Carlo , Substância Branca/fisiologia
5.
PLoS One ; 8(6): e66022, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23785466

RESUMO

PURPOSE: The aim of the study was to determine the usefulness of diffusion tensor tractography (DTT) in parkinsonian disorders using a recently developed method for normalization of diffusion data and tract size along white matter tracts. Furthermore, the use of DTT in selected white matter tracts for differential diagnosis was assessed. METHODS: We quantified global and regional diffusion parameters in major white matter tracts in patients with multiple system atrophy (MSA), progressive nuclear palsy (PSP), idiopathic Parkinson's disease (IPD) and healthy controls). Diffusion tensor imaging data sets with whole brain coverage were acquired at 3 T using 48 diffusion encoding directions and a voxel size of 2×2×2 mm(3). DTT of the corpus callosum (CC), cingulum (CG), corticospinal tract (CST) and middle cerebellar peduncles (MCP) was performed using multiple regions of interest. Regional evaluation comprised projection of fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD) and the apparent area coefficient (AAC) onto a calculated mean tract and extraction of their values along each structure. RESULTS: There were significant changes of global DTT parameters in the CST (MSA and PSP), CC (PSP) and CG (PSP). Consistent tract-specific variations in DTT parameters could be seen along each tract in the different patient groups and controls. Regional analysis demonstrated significant changes in the anterior CC (MD, RD and FA), CST (MD) and CG (AAC) of patients with PSP compared to controls. Increased MD in CC and CST, as well as decreased AAC in CG, was correlated with a diagnosis of PSP compared to IPD. CONCLUSIONS: DTT can be used for demonstrating disease-specific regional white matter changes in parkinsonian disorders. The anterior portion of the CC was identified as a promising region for detection of neurodegenerative changes in patients with PSP, as well as for differential diagnosis between PSP and IPD.


Assuntos
Imagem de Tensor de Difusão , Vias Neurais/patologia , Transtornos Parkinsonianos/diagnóstico , Idoso , Estudos de Casos e Controles , Diagnóstico Diferencial , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA