Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-36674305

RESUMO

The aim of this study was to analyse the quality of indoor air in sport facilities in one of the sport centres in Poland with respect to microclimatic parameters (temperature, humidity, and air flow velocity), particulate matter concentrations (PM10, PM4, PM2.5, and PM1), gas concentrations (oxygen, ozone, hydrogen sulphide, sulphur dioxide, volatile organic compounds, and benzopyrene), and microbial contamination (the total number of bacteria, specifically staphylococci, including Staphylococcus aureus, haemolytic bacteria, Enterobacteriaceae, Pseudomonas fluorescens, actinomycetes, and the total number of fungi and xerophilic fungi). Measurements were made three times in May 2022 at 28 sampling points in 5 different sporting areas (the climbing wall, swimming pool, swimming pool changing room, and basketball and badminton courts) depending on the time of day (morning or afternoon) and on the outside building. The obtained results were compared with the standards for air quality in sports facilities. The air temperature (21−31 °C) was at the upper limit of thermal comfort, while the air humidity (RH < 40%) in the sports halls in most of the locations was below demanded values. The values for dust pollution in all rooms, except the swimming pool, exceeded the permissible limits, especially in the afternoons. Climatic conditions correlated with a high concentration of dust in the indoor air. Particulate matter concentrations of all fractions exceeded the WHO guidelines in all researched premises; the largest exceedances of standards occurred for PM2.5 (five-fold) and for PM10 (two-fold). There were no exceedances of gaseous pollutant concentrations in the air, except for benzopyrene, which resulted from the influence of the outside air. The total number of bacteria (5.1 × 101−2.0 × 104 CFU m−3) and fungi (3.0 × 101−3.75 × 102 CFU m−3) was exceeded in the changing room and the climbing wall hall. An increased number of staphylococci in the afternoon was associated with a large number of people training. The increased concentration of xerophilic fungi in the air correlated with the high dust content and low air humidity. Along with the increase in the number of users in the afternoon and their activities, the concentration of dust (several times) and microorganisms (1−2 log) in the air increased by several times and 1−2 log, respectively. The present study indicates which air quality parameters should be monitored and provides guidelines on how to increase the comfort of those who practice sports and work in sports facilities.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Basquetebol , Humanos , Poeira/análise , Poluição do Ar em Ambientes Fechados/análise , Material Particulado/análise , Dióxido de Enxofre/análise , Benzopirenos/análise , Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos
2.
Artigo em Inglês | MEDLINE | ID: mdl-35457694

RESUMO

This study aimed to assess the physicochemical, microbiological and toxicological hazards at an illegal landfill in central Poland. The research included the analysis of airborne dust (laser photometer), the number of microorganisms in the air, soil and leachate (culture method) and the microbial diversity in the landfill environment (high-throughput sequencing on the Illumina Miseq); the cytotoxicity (PrestoBlue) and genotoxicity (alkaline comet assay) of soil and leachate were tested. Moreover, an analysis of UHPLC-Q-ToF-UHRMS (ultra-high-performance liquid chromatography-quadrupole-time-of-flight ultrahigh-resolution mass spectrometry) was performed to determine the toxic compounds and microbial metabolites. The PM1 dust fraction constituted 99.89% and 99.99% of total dust and exceeded the threshold of 0.025 mg m-3 at the tested locations. In the air, the total number of bacteria was 9.33 × 101-1.11 × 103 CFU m-3, while fungi ranged from 1.17 × 102 to 4.73 × 102 CFU m-3. Psychrophilic bacteria were detected in the largest number in leachates (3.3 × 104 to 2.69 × 106 CFU mL-1) and in soil samples (8.53 × 105 to 1.28 × 106 CFU g-1). Bacteria belonging to Proteobacteria (42-64.7%), Bacteroidetes (4.2-23.7%), Actinobacteria (3.4-19.8%) and Firmicutes (0.7-6.3%) dominated. In the case of fungi, Basidiomycota (23.3-27.7%), Ascomycota (5.6-46.3%) and Mortierellomycota (3.1%) have the highest abundance. Bacteria (Bacillus, Clostridium, Cellulosimicrobium, Escherichia, Pseudomonas) and fungi (Microascus, Chrysosporium, Candida, Malassezia, Aspergillus, Alternaria, Fusarium, Stachybotrys, Cladosporium, Didymella) that are potentially hazardous to human health were detected in samples collected from the landfill. Tested leachates and soils were characterised by varied cyto/genotoxins. Common pesticides (carbamazepine, prometryn, terbutryn, permethrin, carbanilide, pyrethrin, carbaryl and prallethrin), quaternary ammonium compounds (benzalkonium chlorides), chemicals and/or polymer degradation products (melamine, triphenylphosphate, diphenylphtalate, insect repellent diethyltoluamide, and drugs (ketoprofen)) were found in soil and leachate samples. It has been proven that the tested landfill is the source of the emission of particulate matter; microorganisms (including potential pathogens) and cyto/genotoxic compounds.


Assuntos
Microbiologia do Ar , Poeira , Bactérias , Poeira/análise , Fungos , Humanos , Polônia , Solo , Instalações de Eliminação de Resíduos
3.
J Environ Manage ; 303: 114257, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34920354

RESUMO

Even though biological hazards in the work environments related to waste management were the subject of many scientific works, the knowledge of the topic is not extensive. This study aimed to conduct a comprehensive assessment of microbiological and toxicological hazards at the workstations in a waste sorting plant and develop guidelines for selecting filtering respiratory protective devices that would consider specific workplace conditions. The research included the assessment of quantity (culture method), diversity (high-throughput sequencing), and metabolites (endotoxin - gas chromatography-mass spectrometry; secondary metabolites - liquid chromatography tandem-mass spectrometry) of microorganisms occurring in the air and settled dust. Moreover, cytotoxicity of settled dust against a human epithelial lung cell line was determined with an MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. The research was performed in a waste sorting plant (Poland; 240,000 tons waste/year) at six workstations: two feeders, two pre-sorting cabins, secondary raw material press and organic fraction waste feeder for composting. The total dust concentration at tested workstations varied from 0.128 mg m-3 to 5.443 mg m-3. The number of microorganisms was between 9.23 × 104 CFU m-3 and 1.38 × 105 CFU m-3 for bacteria and between 1.43 × 105 CFU m-3 and 1.65 × 105 CFU m-3 for fungi, which suggests high microbial contamination of the sorting facility. The numbers of microorganisms in the air correlated very strongly (R2 from 0.70 to 0.94) with those observed in settled dust. Microorganisms representing Group 2 biological agents (acc. to Directive, 2000/54/EC), including Corynebacterium spp., Pseudomonas aeruginosa, Staphylococcus aureus, and others potentially hazardous to human health, were identified. The endotoxins concentration in settled dust ranged from 0.013 nmol LPS mg-1 to 0.048 nmol LPS mg-1. Seventeen (air) and 91 (settled dust) secondary metabolites characteristic, e.g., for moulds, bacteria, lichens, and plants were identified. All dust samples were cytotoxic (IC50 values of 8.66 and 56.15 mg ml-1 after 72 h). A flowchart of respiratory protective devices selection for biological hazards at the workstations in the waste sorting plant was proposed based on the completed tests to help determine the right type and use duration of the equipment.


Assuntos
Poluentes Ocupacionais do Ar , Exposição Ocupacional , Microbiologia do Ar , Poluentes Ocupacionais do Ar/análise , Bactérias , Poeira/análise , Fungos , Humanos
4.
Toxins (Basel) ; 13(1)2021 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-33435302

RESUMO

This study aimed to detect and quantify mycotoxins on building materials using innovative laser mass spectroscopy methods-silver-109/silver/gold nanoparticle-enhanced target surface-assisted laser desorption/ionisation mass spectrometry (109AgNPs, AgNPs and AuNPs SALDI). Results from SALDI-type methods were also compared with commonly used matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. Standards of seven moulds mycotoxin in a final concentration of 100 µg/mL for patulin, citrinin, 3-nitropropionic acid, alternariol and 20 µg/mL for sterigmatocystin, cyclopiazonic acid, roquefortine C in the mixture were tested in pure solutions and after extraction from the plasterboards. Among the studied SALDI-type method, the lowest detection limits and the highest signal intensity of the mycotoxins tested were obtained with the use of 109AgNPs SALDI MS. The 109AgNPs method may be considered as an alternative to the currently most frequently used method MALDI MS and also liquid chromatography tandem mass spectrometry LC-MS/MS for mycotoxin determination. Future studies should attempt to use these methods for mass spectrometry imaging (MSI) to evaluate spatial distribution and depth of mycotoxin penetration into building materials.


Assuntos
Materiais de Construção/análise , Ouro/química , Nanopartículas Metálicas/química , Micotoxinas/química , Prata/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
5.
Polymers (Basel) ; 12(2)2020 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-32033396

RESUMO

In this work, beeswax was used for the first time for finishing polyester/Cotton/Viscose blend fabric and polyester fabric. The aims of the study were: (1) to characterize the composition of beeswax (using Gas Chromatography Mass Spectrometry, GC-MS and 109AgNPET laser desorption/ionization mass spectrometry (LDI MS); (2) to develop a laboratory method for applying beeswax; (3) to assess the antimicrobial activity of beeswax fabrics against bacteria and fungi (AATCC 100-2004 test); and (4) to assess the properties of textiles modified by beeswax. Beeswax was composed of fatty acids, monoacyl esters, glyceride esters and more complex lipids. The bioactivity of modified fabrics was from -0.09 to 1.55. The highest biocidal activity (>1) was obtained for both fabrics against A. niger mold. The beeswax modification process neither affected the morphological structure of the fibers (the wax evenly covered the surface of the fibers) nor their color. The only statistically significant changes observed were in the mechanical properties of the fabrics. The results obtained indicate that modification of fabrics with beeswax may endow them with biocidal properties against molds, which has practical applications, for example, for the prevention of skin mycoses in health and social care facilities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA