Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Blood Adv ; 6(13): 4006-4014, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35533262

RESUMO

Measurable residual disease (MRD) is highly prognostic for relapse and overall survival (OS) in acute lymphoblastic leukemia (ALL), although many patients with apparent "MRD negativity" by standard assays still relapse. We evaluated the clinical impact of a highly sensitive next-generation sequencing (NGS) MRD assay in 74 adults with ALL undergoing frontline therapy. Among remission samples that were MRD negative by multiparameter flow cytometry (MFC), 46% were MRD+ by the NGS assay. After 1 cycle of induction chemotherapy, MRD negativity by MFC at a sensitivity of 1 × 10-4 and NGS at a sensitivity of 1 × 10-6 was achieved in 66% and 23% of patients, respectively. The 5-year cumulative incidence of relapse (CIR) among patients who achieved MRD negativity by MFC at complete remission (CR) was 29%; in contrast, no patients who achieved early MRD negativity by NGS relapsed, and their 5-year OS was 90%. NGS MRD negativity at CR was associated with significantly decreased risk of relapse compared with MRD positivity (5-year CIR, 0% vs 45%, respectively; P = .04). Among patients who were MRD negative by MFC, detection of low levels of MRD by NGS identified patients who still had a significant risk of relapse (5-year CIR, 39%). Early assessment of MRD using a highly sensitive NGS assay adds clinically relevant prognostic information to standard MFC-based approaches and can identify patients with ALL undergoing frontline therapy who have a very low risk of relapse and excellent long-term survival.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Leucemia-Linfoma Linfoblástico de Células Precursoras , Doença Aguda , Adulto , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Neoplasia Residual/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Recidiva
3.
J Phys Condens Matter ; 27(6): 064116, 2015 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-25563431

RESUMO

Genetic information, which is stored in the long strand of genomic DNA as chromatin, must be scanned and read out by various transcription factors. First, gene-specific transcription factors, which are relatively small (∼50 kDa), scan the genome and bind regulatory elements. Such factors then recruit general transcription factors, Mediators, RNA polymerases, nucleosome remodellers, and histone modifiers, most of which are large protein complexes of 1-3 MDa in size. Here, we propose a new model for the functional significance of the size of transcription factors (or complexes) for gene regulation of chromatin domains. Recent findings suggest that chromatin consists of irregularly folded nucleosome fibres (10 nm fibres) and forms numerous condensed domains (e.g., topologically associating domains). Although the flexibility and dynamics of chromatin allow repositioning of genes within the condensed domains, the size exclusion effect of the domain may limit accessibility of DNA sequences by transcription factors. We used Monte Carlo computer simulations to determine the physical size limit of transcription factors that can enter condensed chromatin domains. Small gene-specific transcription factors can penetrate into the chromatin domains and search their target sequences, whereas large transcription complexes cannot enter the domain. Due to this property, once a large complex binds its target site via gene-specific factors it can act as a 'buoy' to keep the target region on the surface of the condensed domain and maintain transcriptional competency. This size-dependent specialization of target-scanning and surface-tethering functions could provide novel insight into the mechanisms of various DNA transactions, such as DNA replication and repair/recombination.


Assuntos
Cromatina/química , Cromatina/metabolismo , Regulação da Expressão Gênica , Método de Monte Carlo , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Transcrição Gênica , Cromatina/genética , Modelos Moleculares , Peso Molecular , Estrutura Terciária de Proteína , Ativação Transcricional
4.
Nucleus ; 4(5): 349-56, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23945462

RESUMO

Genomic DNA is organized three dimensionally within cells as chromatin and is searched and read by various proteins by an unknown mechanism; this mediates diverse cell functions. Recently, several pieces of evidence, including our cryomicroscopy and synchrotron X-ray scattering analyses, have demonstrated that chromatin consists of irregularly folded nucleosome fibers without a 30-nm chromatin fiber (i.e., a polymer melt-like structure). This melt-like structure implies a less physically constrained and locally more dynamic state, which may be crucial for protein factors to scan genomic DNA. Using a combined approach of fluorescence correlation spectroscopy, Monte Carlo computer simulations, and single nucleosome imaging, we demonstrated the flexible and dynamic nature of the nucleosome fiber in living mammalian cells. We observed local nucleosome fluctuation (~50 nm movement/30 ms) caused by Brownian motion. Our in vivo/in silico results suggest that local nucleosome dynamics facilitate chromatin accessibility and play a critical role in the scanning of genome information.


Assuntos
Nucleossomos/metabolismo , Animais , Sobrevivência Celular , Cromossomos/genética , Cromossomos/metabolismo , Simulação por Computador , Genômica , Humanos , Interfase/genética , Mitose/genética , Imagem Molecular , Método de Monte Carlo , Nucleossomos/genética
5.
Clin Neurophysiol ; 121(9): 1438-1446, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20400371

RESUMO

OBJECTIVE: Multiscale entropy (MSE) is a recently proposed entropy-based index of physiological complexity, evaluating signals at multiple temporal scales. To test this method as an aid to elucidating the pathophysiology of Alzheimer's disease (AD), we examined MSE in resting state EEG activity in comparison with traditional EEG analysis. METHODS: We recorded EEG in medication-free 15 presenile AD patients and 18 age- and sex-matched healthy control (HC) subjects. MSE was calculated for continuous 60-s epochs for each group, concurrently with power analysis. RESULTS: The MSE results from smaller and larger scales were associated with higher and lower frequencies of relative power, respectively. Group analysis demonstrated that the AD group had less complexity at smaller scales in more frontal areas, consistent with previous findings. In contrast, higher complexity at larger scales was observed across brain areas in AD group and this higher complexity was significantly correlated with cognitive decline. CONCLUSIONS: MSE measures identified an abnormal complexity profile across different temporal scales and their relation to the severity of AD. SIGNIFICANCE: These findings indicate that entropy-based analytic methods with applied at temporal scales may serve as a complementary approach for characterizing and understanding abnormal cortical dynamics in AD.


Assuntos
Doença de Alzheimer/fisiopatologia , Eletroencefalografia , Entropia , Dinâmica não Linear , Idoso , Análise de Variância , Estudos de Casos e Controles , Eletroencefalografia/métodos , Feminino , Análise de Fourier , Humanos , Masculino , Pessoa de Meia-Idade , Estatística como Assunto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA