Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Malar J ; 20(1): 268, 2021 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-34120608

RESUMO

BACKGROUND: House improvement (HI) to prevent mosquito house entry, and larval source management (LSM) targeting aquatic mosquito stages to prevent development into adult forms, are promising complementary interventions to current malaria vector control strategies. Lack of evidence on costs and cost-effectiveness of community-led implementation of HI and LSM has hindered wide-scale adoption. This study presents an incremental cost analysis of community-led implementation of HI and LSM, in a cluster-randomized, factorial design trial, in addition to standard national malaria control interventions in a rural area (25,000 people), in southern Malawi. METHODS: In the trial, LSM comprised draining, filling, and Bacillus thuringiensis israelensis-based larviciding, while house improvement (henceforth HI) involved closing of eaves and gaps on walls, screening windows/ventilation spaces with wire mesh, and doorway modifications. Communities implemented all interventions. Costs were estimated retrospectively using the 'ingredients approach', combining 'bottom-up' and 'top-down approaches', from the societal perspective. To estimate the cost of independently implementing each intervention arm, resources shared between trial arms (e.g. overheads) were allocated to each consuming arm using proxies developed based on share of resource input quantities consumed. Incremental implementation costs (in 2017 US$) are presented for HI-only, LSM-only and HI + LSM arms. In sensitivity analyses, the effect of varying costs of important inputs on estimated costs was explored. RESULTS: The total economic programme costs of community-led HI and LSM implementation was $626,152. Incremental economic implementation costs of HI, LSM and HI + LSM were estimated as $27.04, $25.06 and $33.44, per person per year, respectively. Project staff, transport and labour costs, but not larvicide or screening material, were the major cost drivers across all interventions. Costs were sensitive to changes in staff costs and population covered. CONCLUSIONS: In the trial, the incremental economic costs of community-led HI and LSM implementation were high compared to previous house improvement and LSM studies. Several factors, including intervention design, year-round LSM implementation and low human population density could explain the high costs. The factorial trial design necessitated use of proxies to allocate costs shared between trial arms, which limits generalizability where different designs are used. Nevertheless, costs may inform planners of similar intervention packages where cost-effectiveness is known. Trial registration Not applicable. The original trial was registered with The Pan African Clinical Trials Registry on 3 March 2016, trial number PACTR201604001501493.


Assuntos
Anopheles , Participação da Comunidade/economia , Controle de Mosquitos/economia , Mosquitos Vetores , Animais , Anopheles/crescimento & desenvolvimento , Análise por Conglomerados , Participação da Comunidade/estatística & dados numéricos , Custos e Análise de Custo , Larva/crescimento & desenvolvimento , Malaui , Mosquitos Vetores/crescimento & desenvolvimento , Estudos Retrospectivos
2.
Malar J ; 19(1): 195, 2020 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-32487233

RESUMO

BACKGROUND: To further reduce malaria, larval source management (LSM) is proposed as a complementary strategy to the existing strategies. LSM has potential to control insecticide resistant, outdoor biting and outdoor resting vectors. Concerns about costs and operational feasibility of implementation of LSM at large scale are among the reasons the strategy is not utilized in many African countries. Involving communities in LSM could increase intervention coverage, reduce costs of implementation and improve sustainability of operations. Community acceptance and participation in community-led LSM depends on a number of factors. These factors were explored under the Majete Malaria Project in Chikwawa district, southern Malawi. METHODS: Separate focus group discussions (FGDs) were conducted with members from the general community (n = 3); health animators (HAs) (n = 3); and LSM committee members (n = 3). In-depth interviews (IDIs) were conducted with community members. Framework analysis was employed to determine the factors contributing to community acceptance and participation in the locally-driven intervention. RESULTS: Nine FGDs and 24 IDIs were held, involving 87 members of the community. Widespread knowledge of malaria as a health problem, its mode of transmission, mosquito larval habitats and mosquito control was recorded. High awareness of an association between creation of larval habitats and malaria transmission was reported. Perception of LSM as a tool for malaria control was high. The use of a microbial larvicide as a form of LSM was perceived as both safe and effective. However, actual participation in LSM by the different interviewee groups varied. Labour-intensiveness and time requirements of the LSM activities, lack of financial incentives, and concern about health risks when wading in water bodies contributed to lower participation. CONCLUSION: Community involvement in LSM increased local awareness of malaria as a health problem, its risk factors and control strategies. However, community participation varied among the respondent groups, with labour and time demands of the activities, and lack of incentives, contributing to reduced participation. Innovative tools that can reduce the labour and time demands could improve community participation in the activities. Further studies are required to investigate the forms and modes of delivery of incentives in operational community-driven LSM interventions.


Assuntos
Anopheles , Participação da Comunidade/psicologia , Conhecimentos, Atitudes e Prática em Saúde , Malária/psicologia , Controle de Mosquitos/estatística & dados numéricos , Mosquitos Vetores , Animais , Anopheles/crescimento & desenvolvimento , Grupos Focais , Larva/crescimento & desenvolvimento , Malária/prevenção & controle , Malaui , Mosquitos Vetores/crescimento & desenvolvimento
3.
Malar J ; 18(1): 51, 2019 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-30795766

RESUMO

BACKGROUND: Entomological monitoring is important for public health because it provides data on the distribution, abundance and host-seeking behaviour of disease vectors. Various methods for sampling mosquitoes exist, most of which are biased towards, or specifically target, certain portions of a mosquito population. This study assessed the Suna trap, an odour-baited trap for sampling host-seeking mosquitoes both indoors and outdoors. METHODS: Two separate field experiments were conducted in villages in southern Malawi. The efficiency of the Suna trap in sampling mosquitoes was compared to that of the human landing catch (HLC) indoors and outdoors and the Centers for Disease, Control and Prevention Light Trap (CDC-LT) indoors. Potential competition between two Suna traps during simultaneous use of the traps indoors and outdoors was assessed by comparing mosquito catch sizes across three treatments: one trap indoors only; one trap outdoors only; and one trap indoors and one trap outdoors used simultaneously at the same house. RESULTS: The efficiency of the Suna trap in sampling female anophelines was similar to that of HLC indoors (P = 0.271) and HLC outdoors (P = 0.125), but lower than that of CDC-LT indoors (P = 0.001). Anopheline catch sizes in the Suna trap used alone indoors were similar to indoor Suna trap catch sizes when another Suna trap was simultaneously present outdoors (P = 0.891). Similarly, catch sizes of female anophelines with the Suna trap outdoors were similar to those that were caught outdoors when another Suna trap was simultaneously present indoors (P = 0.731). CONCLUSIONS: The efficiency of the Suna trap in sampling mosquitoes was equivalent to that of the HLC. Whereas the CDC-LT was more efficient in collecting female anophelines indoors, the use of this trap outdoors is limited given the requirement of setting it next to an occupied bed net. As demonstrated in this research, outdoor collections are also essential because they provide data on the relative contribution of outdoor biting to malaria transmission. Therefore, the Suna trap could serve as an alternative to the HLC and the CDC-LT, because it does not require the use of humans as natural baits, allows standardised sampling conditions across sampling points, and can be used outdoors. Furthermore, using two Suna traps simultaneously indoors and outdoors does not interfere with the sampling efficiency of either trap, which would save a considerable amount of time, energy, and resources compared to setting the traps indoors and then outdoors in two consecutive nights.


Assuntos
Anopheles/efeitos dos fármacos , Fatores Quimiotáticos/farmacologia , Culex/efeitos dos fármacos , Entomologia/métodos , Mosquitos Vetores/efeitos dos fármacos , Animais , Anopheles/crescimento & desenvolvimento , Culex/crescimento & desenvolvimento , Feminino , Malaui , Masculino , Mosquitos Vetores/crescimento & desenvolvimento
4.
Int J Epidemiol ; 47(6): 2015-2024, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30376050

RESUMO

Background: Infectious disease interventions are increasingly tested using cluster-randomized trials (CRTs). These trial settings tend to involve a set of sampling units, such as villages, whose geographic arrangement may present a contamination risk in treatment exposure. The most widely used approach for reducing contamination in these settings is the so-called fried-egg design, which excludes the outer portion of all available clusters from the primary trial analysis. However, the fried-egg design ignores potential intra-cluster spatial heterogeneity and makes the outcome measure inherently less precise. Whereas the fried-egg design may be appropriate in specific settings, alternative methods to optimize the design of CRTs in other settings are lacking. Methods: We present a novel approach for CRT design that either fully includes or fully excludes available clusters in a defined study region, recognizing the potential for intra-cluster spatial heterogeneity. The approach includes an algorithm that allows investigators to identify the maximum number of clusters that could be included for a defined study region and maintain randomness in both the selection of included clusters and the allocation of clusters to either the treatment group or control group. The approach was applied to the design of a CRT testing the effectiveness of malaria vector-control interventions in southern Malawi. Conclusions: Those planning CRTs to evaluate interventions should consider the approach presented here during trial design. The approach provides a novel framework for reducing the risk of contamination among the CRT randomization units in settings where investigators determine the reduction of contamination risk as a high priority and where intra-cluster spatial heterogeneity is likely. By maintaining randomness in the allocation of clusters to either the treatment group or control group, the approach also permits a randomization-valid test of the primary trial hypothesis.


Assuntos
Doenças Transmissíveis , Transmissão de Doença Infecciosa/prevenção & controle , Ensaios Clínicos Controlados Aleatórios como Assunto , Gestão de Riscos , Análise por Conglomerados , Doenças Transmissíveis/epidemiologia , Doenças Transmissíveis/transmissão , Humanos , Ensaios Clínicos Controlados Aleatórios como Assunto/métodos , Ensaios Clínicos Controlados Aleatórios como Assunto/normas , Projetos de Pesquisa , Gestão de Riscos/métodos , Gestão de Riscos/organização & administração
5.
BMC Infect Dis ; 17(1): 639, 2017 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-28938876

RESUMO

BACKGROUND: Due to outdoor and residual transmission and insecticide resistance, long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS) will be insufficient as stand-alone malaria vector control interventions in many settings as programmes shift toward malaria elimination. Combining additional vector control interventions as part of an integrated strategy would potentially overcome these challenges. Larval source management (LSM) and structural house improvements (HI) are appealing as additional components of an integrated vector management plan because of their long histories of use, evidence on effectiveness in appropriate settings, and unique modes of action compared to LLINs and IRS. Implementation of LSM and HI through a community-based approach could provide a path for rolling-out these interventions sustainably and on a large scale. METHODS/DESIGN: We will implement community-based LSM and HI, as additional interventions to the current national malaria control strategies, using a randomised block, 2 × 2 factorial, cluster-randomised design in rural, southern Malawi. These interventions will be continued for two years. The trial catchment area covers about 25,000 people living in 65 villages. Community participation is encouraged by training community volunteers as health animators, and supporting the organisation of village-level committees in collaboration with The Hunger Project, a non-governmental organisation. Household-level cross-sectional surveys, including parasitological and entomological sampling, will be conducted on a rolling, 2-monthly schedule to measure outcomes over two years (2016 to 2018). Coverage of LSM and HI will also be assessed throughout the trial area. DISCUSSION: Combining LSM and/or HI together with the interventions currently implemented by the Malawi National Malaria Control Programme is anticipated to reduce malaria transmission below the level reached by current interventions alone. Implementation of LSM and HI through a community-based approach provides an opportunity for optimum adaptation to the local ecological and social setting, and enhances the potential for sustainability. TRIAL REGISTRATION: Registered with The Pan African Clinical Trials Registry on 3 March 2016, trial number PACTR201604001501493.


Assuntos
Inseticidas/farmacologia , Malária/prevenção & controle , Malária/transmissão , Controle de Mosquitos/métodos , Animais , Estudos Transversais , Características da Família , Feminino , Humanos , Mosquiteiros Tratados com Inseticida , Larva/efeitos dos fármacos , Malaui , Mosquitos Vetores , População Rural
6.
Lancet ; 388(10050): 1193-201, 2016 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-27520594

RESUMO

BACKGROUND: Odour baits can attract host-seeking Anopheles mosquitoes indoors and outdoors. We assessed the effects of mass deployment of odour-baited traps on malaria transmission and disease burden. METHODS: We installed solar-powered odour-baited mosquito trapping systems (SMoTS) to households on Rusinga Island, Lake Victoria, western Kenya (mean population 24 879), in a stepped-wedge cluster-randomised trial. All residents in the completed health and demographic surveillance system were eligible to participate. We used the travelling salesman algorithm to assign all households to a cluster (50 or 51 geographically contiguous households); nine contiguous clusters formed a metacluster. Initially, no cluster had SMoTS (non-intervened). During the course of the intervention roll-out SMoTS were gradually installed cluster by cluster until all clusters had SMoTS installed (intervened). We generated 27 cluster randomisations, with the cluster as unit of randomisation, to establish the order to install the traps in the clusters until all had a SMoTS installed. Field workers and participants were not masked to group allocation. The primary outcome of clinical malaria was monitored through repeated household visits covering the entire population, once before roll-out (baseline) and five times throughout the 2-year roll-out. We measured clinical malaria as fever plus a positive result with a rapid diagnostic test. The SolarMal project was registered on the Dutch Trial Register (NTR 3496). FINDINGS: We enrolled 34 041 participants between April 25, 2012, and March 23, 2015, to 81 clusters and nine metaclusters. 4358 households were provided with SMoTS during roll-out between June 3, 2013, and May 16, 2015. 23 clinical malaria episodes were recorded in intervened clusters and 33 episodes in non-intervened clusters (adjusted effectiveness 40·8% [95% CI -172·8 to 87·1], p=0·5) during the roll-out. Malaria prevalence measured by rapid diagnostic test was 29·8% (95% CI 20·9-38·0) lower in SMoTS clusters (prevalence 23·7%; 1552 of 6550 people) than in non-intervened clusters (prevalence 34·5%; 2002 of 5795 people). INTERPRETATION: The unexpectedly low clinical incidence of malaria during roll-out led to an imprecise estimate of effectiveness from the clinical incidence data. The substantial effect on malaria prevalence is explained by reduction in densities of Anopheles funestus. Odour-baited traps might be an effective malaria intervention. FUNDING: COmON Foundation.


Assuntos
Anopheles , Efeitos Psicossociais da Doença , Mosquiteiros Tratados com Inseticida , Malária/epidemiologia , Malária/prevenção & controle , Controle de Mosquitos/métodos , Odorantes , Animais , Medicina Baseada em Evidências , Feminino , Humanos , Incidência , Insetos Vetores , Mosquiteiros Tratados com Inseticida/estatística & dados numéricos , Quênia , Malária/diagnóstico , Malária/transmissão , Masculino , Prevalência , Projetos de Pesquisa , Resultado do Tratamento
7.
BMC Res Notes ; 8: 397, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26323664

RESUMO

BACKGROUND: Health in low and middle income countries is on one hand characterized by a high burden associated with preventable communicable diseases and on the other hand considered to be under-documented due to improper basic health and demographic record-keeping. health and demographic surveillance systems (HDSSs) have provided researchers, policy makers and governments with data about local population dynamics and health related information. In order for an HDSS to deliver high quality data, effective organization of data collection and management are vital. HDSSs impose a challenging logistical process typically characterized by door to door visits, poor navigational guidance, conducting interviews recorded on paper, error prone data entry, an extensive staff and marginal data quality management possibilities. METHODS: A large trial investigating the effect of odour-baited mosquito traps on malaria vector populations and malaria transmission on Rusinga Island, western Kenya, has deployed an HDSS. By means of computer tablets in combination with Open Data Kit and OpenHDS data collection and management software experiences with time efficiency, cost effectiveness and high data quality are illustrate. Step by step, a complete organization of the data management infrastructure is described, ranging from routine work in the field to the organization of the centralized data server. RESULTS AND DISCUSSION: Adopting innovative technological advancements has enabled the collection of demographic and malaria data quickly and effectively, with minimal margin for errors. Real-time data quality controls integrated within the system can lead to financial savings and a time efficient work flow. CONCLUSION: This novel method of HDSS implementation demonstrates the feasibility of integrating electronic tools in large-scale health interventions.


Assuntos
Demografia , Indicadores Básicos de Saúde , Malária/epidemiologia , Vigilância da População , Sistemas de Informação Geográfica , Humanos , Quênia/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA