Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Sci Total Environ ; 927: 172132, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38569952

RESUMO

This study investigated the occurrence and distribution of per- and polyfluoroalkyl substances (PFASs) in house dust samples from six regions across four continents. PFASs were detected in all indoor dust samples, with total median concentrations ranging from 17.3 to 197 ng/g. Among the thirty-one PFAS analytes, eight compounds, including emerging PFASs, exhibited high detection frequencies in house dust from all six locations. The levels of PFASs varied by region, with higher concentrations found in Adelaide (Australia), Tianjin (China), and Carbondale (United States, U.S.). Moreover, PFAS composition profiles also differed among regions. Dust from Australia and the U.S. contained high levels of 6:2 fluorotelomer phosphate ester (6:2 diPAP), while perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) were predominant in other regions. Furthermore, our results indicate that socioeconomic factors impact PFAS levels. The assessment of human exposure through dust ingestion and dermal contact indicates that toddlers may experience higher exposure levels than adults. However, the hazard quotients of PFASs for both toddlers and adults were below one, indicating significant health risks are unlikely. Our study highlights the widespread occurrence of PFASs in global indoor dust and the need for continued monitoring and regulation of these chemicals.


Assuntos
Poluição do Ar em Ambientes Fechados , Poeira , Exposição Ambiental , Monitoramento Ambiental , Fluorocarbonos , Poeira/análise , Humanos , Poluição do Ar em Ambientes Fechados/análise , Poluição do Ar em Ambientes Fechados/estatística & dados numéricos , Fluorocarbonos/análise , Exposição Ambiental/estatística & dados numéricos , Exposição Ambiental/análise , Poluentes Atmosféricos/análise , Caprilatos/análise , Ácidos Alcanossulfônicos/análise , Austrália , China
2.
Environ Pollut ; 309: 119801, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35863702

RESUMO

Our study investigated occupational exposure to rare earth elements (REEs) in a major REE processing plant from North China by assessing both external exposure and internal exposure in the workers. An exposure group, including 50 workers in the processing plant, and a control group, including 50 workers from a liquor factory located 150 km away from the exposure group, were recruited in the study. Portable air sampler was employed to accurately measure individual exposure to the external environment, and the data demonstrating significantly higher contamination in the REE processing plant compared with the control group (i.e., 87.5 versus 0.49 µg/m3 of ΣREEs). Blood concentrations were also significantly higher in the exposure group (3.47 versus 2.24 µg/L of ΣREEs). However, the compositional profiles of REEs resembled between the exposure and control group in blood or air particles, indicating the influence of mining/processing activities on the surrounding regions. External exposure in the occupational environment appeared to significantly influence internal REE exposure in the REE processing workers. Some other sociodemographic and occupational factors, including the residence time and the type of work, could also influence occupational exposure to selected REEs. Our data clearly demonstrated the highly elevated REE contamination in both working environment and human bodies compared with the control subjects, raising the critical need for better assessing the health risks from occupational REE exposure and efficient management for occupational hazards.


Assuntos
Metais Terras Raras , Exposição Ocupacional , China , Humanos , Metais Terras Raras/análise , Mineração
3.
Huan Jing Ke Xue ; 42(8): 3676-3681, 2021 Aug 08.
Artigo em Chinês | MEDLINE | ID: mdl-34309254

RESUMO

Although non-phthalate plasticizers are widely used in various consumer products as substitutes for phthalates, currently little is known about their environmental occurrence and the risks of human exposure. To characterize the pollution and human exposure risk in indoor environments, house dust samples collected from 83 households in Guangzhou were analyzed for twelve typical non-phthalate plasticizers. Results showed that dioctyl terephthalate (DEHT), trioctyl trimellitate (TOTM), acetyl lemon tributyl ester (ATBC), heptylnonyl adipate, di(2-ethylhexyl) adipate, and trioctyl trimellitate were detected in all samples. The total concentrations of non-phthalate plasticizers ranged from 22.4 to 615 µg ·g-1 with a median of 101 µg ·g-1. DEHT had the highest concentrations (9-487 µg ·g-1), followed by TOTM (0.3-87 µg ·g-1) and ATBC (1.7-50 µg ·g-1). Daily intakes via dust ingestion for adults and children were estimated based on the dust concentrations. The total daily intake of children was 367 ng ·(kg ·d)-1, which was 8-9 times higher than that of adults[43 ng ·(kg ·d)-1]. Further risk assessment through the hazard quotient approach showed that the exposure of adults and children to non-phthalic plasticizers via dust ingestion was within an acceptable risk range.


Assuntos
Poluição do Ar em Ambientes Fechados , Ácidos Ftálicos , Adulto , Poluição do Ar em Ambientes Fechados/análise , Criança , Poeira , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Humanos , Ácidos Ftálicos/análise , Plastificantes/análise , Medição de Risco
4.
Environ Res ; 192: 110243, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32980300

RESUMO

Our study investigated a large variety of per- and polyfluoroalkyl substances (PFASs) in house dust collected from Guangzhou, South China during 2015-2018. The perfluorobutane sulfonic acid (PFBS) exhibited the highest median concentration (17.6 ng/g), followed by linear perfluorooctanoic acid (L-PFOA; 4.8 ng/g), linear perfluorooctane sulfonic acid (L-PFOS; 4.2 ng/g), 6:2 fluorotelomer phosphate diester (6:2 diPAP; 3.4 ng/g), perfluorodecanoic acid (PFDA; 1.2 ng/g) and perfluoroundecanoic acid (PFUdA; 1.2 ng/g), and 6:2 chlorinated perfluoroalkyl ether sulfonic acid (6:2 Cl-PFESA; 1.1 ng/g). Total concentrations of PFASs (median: 53 ng/g) were generally within the 25-50 percentile of the concentration range reported in global studies. However, our samples exhibited composition profiles different from those reported in many other regions. Analysis based on this and previous studies revealed that the compositions in house dust from East Asia, North America, and Europe exhibit a region-specific pattern. This may indicate region-specific market demands, application patterns, as well as associated human exposure risks. Exploration of dwelling characterizations suggested that renovation history appeared to be a significant factor influencing PFAS concentrations in house dust, although other factors may exist and play a role. Estimation of daily intakes via dust ingestion and dermal contact indicates low exposure risks from these two pathways. However, the PFAS chemical-specific biological effects, possible mixture effects, as well as additional exposure pathways, imply that the risk from indoor PFAS exposure should not be overlooked.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , China , Poeira/análise , Europa (Continente) , Ásia Oriental , Fluorocarbonos/análise , Fluorocarbonos/toxicidade , Humanos , América do Norte
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA