RESUMO
Cobalt (Co) alloys have been used for over seven decades in a wide range of medical devices, including, but not limited to, hip and knee implants, surgical tools, and vascular stents, due to their favorable biocompatibility, durability, and mechanical properties. A recent regulatory hazard classification review by the European Chemicals Agency (ECHA) resulted in the classification of metallic Co as a Class 1B Carcinogen (presumed to have carcinogenic potential for humans), primarily based on inhalation rodent carcinogenicity studies with pure metallic Co. The ECHA review did not specifically consider the carcinogenicity hazard potential of forms or routes of Co that are relevant for medical devices. The purpose of this review is to present a comprehensive assessment of the available in vivo preclinical data on the carcinogenic hazard potential of exposure to Co-containing alloys (CoCA) in medical devices by relevant routes. In vivo data were reviewed from 33 preclinical studies that examined the impact of Co exposure on local and systemic tumor incidence in rats, mice, guinea pigs, and hamsters. Across these studies, there was no significant increase of local or systemic tumors in studies relevant for medical devices. Taken together, the relevant in vivo data led to the conclusion that CoCA in medical devices are not a carcinogenic hazard in available in vivo models. While specific patient and implant factors cannot be fully replicated using in vivo models, the available in vivo preclinical data support that CoCA in medical devices are unlikely a carcinogenic hazard to patients.