Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Inherit Metab Dis ; 40(1): 131-137, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27783170

RESUMO

Despite adequate dietary management, patients with classic galactosemia continue to have increased risks of cognitive deficits, speech dyspraxia, primary ovarian insufficiency, and abnormal motor development. A recent evaluation of a new galactose-1 phosphate uridylyltransferase (GALT)-deficient mouse model revealed reduced fertility and growth restriction. These phenotypes resemble those seen in human patients. In this study, we further assess the fidelity of this new mouse model by examining the animals for the manifestation of a common neurological sequela in human patients: cerebellar ataxia. The balance, grip strength, and motor coordination of GALT-deficient and wild-type mice were tested using a modified rotarod. The results were compared to composite phenotype scoring tests, typically used to evaluate neurological and motor impairment. The data demonstrated abnormalities with varying severity in the GALT-deficient mice. Mice of different ages were used to reveal the progressive nature of motor impairment. The varying severity and age-dependent impairments seen in the animal model agree with reports on human patients. Finally, measurements of the cerebellar granular and molecular layers suggested that mutant mice experience cerebellar hypoplasia, which could have resulted from the down-regulation of the PI3K/Akt signaling pathway.


Assuntos
Ataxia/genética , Galactosemias/genética , UDPglucose-Hexose-1-Fosfato Uridiltransferase/genética , Animais , Modelos Animais de Doenças , Regulação para Baixo/genética , Camundongos , Atividade Motora/genética , Fenótipo , Fosfatidilinositol 3-Quinases/genética , Transdução de Sinais/genética
2.
Hum Mutat ; 33(7): 1107-15, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22461411

RESUMO

Galactose-1-phosphate uridylyltransferase (GALT) catalyzes the conversion of galactose-1-phosphate to UDP-galactose, a key step in the galactose metabolism. Deficiency of GALT activity in humans caused by deleterious variations in the GALT gene can cause a potentially lethal disease called classic galactosemia. In this study, we selected 14 novel nucleotide sequence changes in the GALT genes found in galactosemic patients for expression analysis and molecular modeling. Several variants showed decreased levels of expression and decreased abundance in the soluble fraction of the Escherichia coli cell extracts, suggesting altered stability and solubility. Only six variant GALT enzymes had detectable enzymatic activities. Kinetic studies showed that their V(max) decreased significantly. To further characterize the variants at molecular level, we performed static and dynamic molecular modeling studies. Effects of variations on local and/or global structural features of the enzyme were anticipated for the majority of variants. In-depth studies with molecular dynamic simulations on selected variants predicted the alteration of the protein structure even though static models apparently did not highlight any perturbation. Overall, these studies offered new insights on the molecular properties of GALT enzyme, with the aim of correlating them with the clinical outcome. Hum Mutat 33:1107-1115, 2012. © 2012 Wiley Periodicals, Inc.


Assuntos
UTP-Hexose-1-Fosfato Uridililtransferase/genética , Variação Genética/genética , Humanos , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA