Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 31(7): 10702-10716, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38206464

RESUMO

Land use and land cover (LULC) will cause large flows of carbon sources and sinks. As the world's largest carbon emitter with a complicated LULC, China's carbon emissions have profound implications for its ecological environment and future development. In this paper, we account for the land-use changes and carbon emissions of 30 Chinese provinces and cities in China from 2000 to 2020. Furthermore, the spatial correlation of carbon emissions among the study areas is explored. Four typical regions with spatial association (Beijing, Hebei, Sichuan, and Anhui) are selected, and their land-use change trends in 2025 and 2030 are simulated to predict the total carbon emissions in the future. The results show that the distribution of land-use in China is mainly cultivated and woodland, but the growth of urban built-up (UBL) land area indirectly leads to the continuous increase of carbon emissions. Total carbon emissions have increased over the past two decades, albeit at a slower growth rate, with some provinces experiencing no further growth. In the typical regional carbon emission simulation, it is found that the carbon emissions of the four provinces would show a downward trend in the future. The main reason is the reduction in indirect carbon emissions from fossil energy in UBL, while the other part is the influx of carbon sinks due to grassland, woodland, etc. We recommended that future carbon reduction measures should focus and prioritize controlling fossil energy and mitigating carbon emissions from UBL. Simultaneously, the significant contribution of forests and other land types as carbon sinks should be acknowledged to better implement China's carbon neutral commitment.


Assuntos
Carbono , Florestas , Carbono/análise , China , Pequim , Análise Espaço-Temporal , Dióxido de Carbono/análise , Desenvolvimento Econômico
2.
Proc Natl Acad Sci U S A ; 118(36)2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34480005

RESUMO

The development of high-performance photoacoustic (PA) probes that can monitor disease biomarkers in deep tissue has the potential to replace invasive medical procedures such as a biopsy. However, such probes must be optimized for in vivo performance and exhibit an exceptional safety profile. In this study, we have developed PACu-1, a PA probe designed for biopsy-free assessment (BFA) of hepatic Cu via photoacoustic imaging. PACu-1 features a Cu(I)-responsive trigger appended to an aza-BODIPY dye platform that has been optimized for ratiometric sensing. Owing to its excellent performance, we were able to detect basal levels of Cu in healthy wild-type mice as well as elevated Cu in a Wilson's disease model and in a liver metastasis model. To showcase the potential impact of PACu-1 for BFA, we conducted two blind studies in which we were able to successfully identify Wilson's disease animals from healthy control mice in each instance.


Assuntos
Cobre/metabolismo , Degeneração Hepatolenticular/metabolismo , Neoplasias Hepáticas/secundário , Técnicas Fotoacústicas/instrumentação , Animais , Biópsia , Modelos Animais de Doenças , Degeneração Hepatolenticular/patologia , Camundongos , Camundongos Endogâmicos BALB C , Distribuição Tecidual
3.
Quant Imaging Med Surg ; 11(3): 1046-1059, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33654676

RESUMO

BACKGROUND: Photoacoustic computed tomography (PACT) detects light-induced ultrasound (US) waves to reconstruct the optical absorption contrast of the biological tissues. Due to its relatively deep penetration (several centimeters in soft tissue), high spatial resolution, and inherent functional sensitivity, PACT has great potential for imaging mouse brains with endogenous and exogenous contrasts, which is of immense interest to the neuroscience community. However, conventional PACT either assumes homogenous optical fluence within the brain or uses a simplified attenuation model for optical fluence estimation. Both approaches underestimate the complexity of the fluence heterogeneity and can result in poor quantitative imaging accuracy. METHODS: To optimize the quantitative performance of PACT, we explore for the first time 3D Monte Carlo (MC) simulation to study the optical fluence distribution in a complete mouse brain model. We apply the MCX MC simulation package on a digital mouse (Digimouse) brain atlas that has complete anatomy information. To evaluate the impact of the brain vasculature on light delivery, we also incorporate the whole-brain vasculature in the Digimouse atlas. k-wave toolbox was used to investigate the effect of inhomogeneous illumination on the reconstructed images and chromophore concentration estimation. RESULTS: The simulation results clearly show that the optical fluence in the mouse brain is heterogeneous at the global level and can decrease by a factor of five with increasing depth. Moreover, the strong absorption and scattering of the brain vasculature also induce the fluence disturbance at the local level. CONCLUSIONS: Both global and local fluence heterogeneity contributes to the reduced quantitative accuracy of the reconstructed PACT images of mouse brain. Correcting the optical fluence distribution can improve the quantitative accuracy of PACT.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA