Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Carbohydr Polym ; 295: 119854, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35989001

RESUMO

Conductive hydrogels featuring a modulus similar to the skin have flourished in health monitoring and human-machine interface systems. However, developing conductive hydrogels with self-healing and tunable force-electrical performance remains a problem. Herein, a hydrogen bonding cross-linking strategy was utilized by incorporating silk sericin-modified carbon nanotubes (SS@CNTs) into sodium alginate (SA) and polyvinyl alcohol (PVA). Hydrogels synthesized with desirable tensile strength and self-healing ability (67.2 % self-healing efficiency in fracture strength) assembled into strain sensors with a low detection limit of 0.5 % and a gauge factor (GF) of 4.75 (0-17 %). Additionally, as-prepared hydrogels exhibit high sensitivity to tiny pressure changes, allowing recognition of complex handwriting. Notably, resulting hydrogels possess self-powered property, generating up to 215 V and illuminating 100 commercial green LEDs. This work stems from the pressing need for multifunctional hydrogels with prospective applications in human motion sensing and energy harvesting.


Assuntos
Hidrogéis , Nanotubos de Carbono , Alginatos , Condutividade Elétrica , Humanos , Álcool de Polivinil
2.
ACS Appl Mater Interfaces ; 14(17): 20113-20121, 2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35467822

RESUMO

Despite rapid advances in stretchable electrodes, successful examples of polymeric dry electrodes are limited. Especially in wearable health monitoring, it is urgent to develop biocompatible electrodes that possess intrinsic skin-compliance while maintaining a high conductivity. Herein, a strategy is demonstrated to synergistically regulate the interpenetration behavior and molecular crystallinity in the blend via embedding a novel double network, i.e. physically cross-linked poly(vinyl alcohol) (PVA) and covalently cross-linked polyethylene glycol diacrylate (PEGDA), into the PEDOT:PSS matrix. The favorable interaction energy between PVA and PEGDA enables well-distributed microstructure with finer phase separation in the film, affording a low Young's modulus of 16 MPa with a high conductivity of 442 S/cm. Consequently, the optimal polymeric electrode can acquire high-quality electromyogram (EMG) and electrocardiogram (ECG) signals. Our results provide a feasible approach for producing skin-compliant polymeric electrodes toward next-generation health monitors.


Assuntos
Polímeros , Dispositivos Eletrônicos Vestíveis , Condutividade Elétrica , Eletrodos , Polímeros/química , Álcool de Polivinil
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA