RESUMO
Landscape features can impede dispersal, gene flow, and population demography, resulting in the formation of several meta-populations within a continuous landscape. Understanding a species' ability to overcome these barriers is critical for predicting genetic connectivity and population persistence, and implementing effective conservation strategies. In the present study, we conducted a fine-scale spatial genetic analysis to understand the contemporary gene flow within red panda populations in the Eastern Himalayas. Employing geometric aspects of reserve design, we delineated the critical core habitats for red pandas, which comprise 14.5 % of the landscape (12,189.75 Km2), with only a mere 443 Km2 falling within the protected areas. We identified corridors among the core habitats, which may be vital for the species' long-term genetic viability. Furthermore, we identified substantial landscape barriers, including Sela Pass in the western region, Siang river in the central region, and the Dibang river, Lohit river, along with Dihang, Dipher, and Kumjawng passes in the eastern region, which hinder gene flow. We suggest managing red panda populations through the creation of Community Conservation Reserves in the identified core habitats, following landscape-level management planning based on the core principles of geometric reserve design. This includes a specific emphasis on identified core habitats of red panda (CH-RP 5 and CH-RP 8) to facilitate corridors and implement meta-population dynamics. We propose the development of a comprehensive, long-term conservation and management plan for red pandas in the transboundary landscape, covering China, Nepal, and Bhutan.
Assuntos
Conservação dos Recursos Naturais , Ecossistema , Fluxo Gênico , Ursidae , Animais , Ursidae/genética , China , Distribuição Animal , HimalaiaRESUMO
BACKGROUND: Captive breeding programs play a vital role in conservation of threatened species, necessitating an understanding of genetic diversity among captive individuals to ensure long-term genetic viability, appropriate mate selection, and successful reintroduction to native habitats. METHODS AND RESULTS: We did not observe any recent genetic bottleneck, and population showed moderate genetic diversity. The estimated effective population size, representing individuals capable of contributing genetically to future generations, was estimated as 18.6 individuals (11.4-35.1 at 95% CI). Based on the genetic make-up and allelic diversity, we found seventeen pangolins (11 females and 6 males) were genetically unrelated and relatively more potent than others. CONCLUSION: In this study, we evaluated the captive breeding program of the Indian pangolin population at the Pangolin Conservation Breeding Centre in Nandankanan Zoological Park, Bhubaneswar, Odisha. We highlight the significance of genetic monitoring within the captive population of Indian pangolin for preserving genetic diversity and ensuring the long-term survival of the species. We established the genetic profiles of all 29 pangolins and identified 17 pangolins to be prioritized for enhanced breeding and future zoo exchange programs. We appreciate the zoo authorities for promoting genetic assessment of pangolin for better and more effective monitoring of the captive breeding of the endangered Indian pangolin.
Assuntos
Cruzamento , Pangolins , Humanos , Feminino , Masculino , Animais , Alelos , Espécies em Perigo de Extinção , Perfil GenéticoRESUMO
The improvement and application of pest models to predict yield losses is still a challenge for the scientific community. However, pest models were targeted chiefly towards scheduling scouting or pesticide applications to deal with pest infestation. Thysanoptera (thrips) significantly impact the productivity of many economically important crops worldwide. Until now, no comprehensive study is available on the global distribution of pest thrips, as well as on the extent of cropland vulnerability worldwide. Further, nothing is known about the climate change impacts on these insects. Thus the present study was designed to map the global distribution and quantify the extent of cropland vulnerability in the present and future climate scenarios using data of identified pest thrips within the genus, i.e., Thrips, Frankliniella, and Scirtothrips. Our found significant niche contraction under the climate change scenarios and thrips may reside primarily in their thermal tolerance thresholds. About 3,98,160 km2 of cropland globally was found to be affected in the present scenario. However, it may significantly reduce to 5530 Km2 by 2050 and 1990 km2 by 2070. Further, the thrips distribution mostly getting restricted to Eastern North America, the North-western of the Indian sub-continent, and the north of Europe. Among all realms, thrips may lose ground in the Indo-Malayan realm at the most and get restricted to only 27 out of 825 terrestrial ecoregions. The agrarian communities of the infested regions may get benefit if these pests get wiped out, but on the contrary, we may lose species diversity. Moreover, the vacated niche may attract other invasive species, which may seriously impact the species composition and agricultural productivity. The present study findings can be used in making informed decisions about prioritizing future economic and research investments on the thrips in light of anticipated climate change impacts.
Assuntos
Agricultura , Mudança Climática , Tisanópteros , Animais , Produtos Agrícolas , Controle de Pragas/tendênciasRESUMO
BACKGROUND: Species domestication is generally characterized by the exploitation of high-impact mutations through processes that involve complex shifting demographics of domesticated species. These include not only inbreeding and artificial selection that may lead to the emergence of evolutionary bottlenecks, but also post-divergence gene flow and introgression. Although domestication potentially affects the occurrence of both desired and undesired mutations, the way wild relatives of domesticated species evolve and how expensive the genetic cost underlying domestication is remain poorly understood. Here, we investigated the demographic history and genetic load of chicken domestication. RESULTS: We analyzed a dataset comprising over 800 whole genomes from both indigenous chickens and wild jungle fowls. We show that despite having a higher genetic diversity than their wild counterparts (average π, 0.00326 vs. 0.00316), the red jungle fowls, the present-day domestic chickens experienced a dramatic population size decline during their early domestication. Our analyses suggest that the concomitant bottleneck induced 2.95% more deleterious mutations across chicken genomes compared with red jungle fowls, supporting the "cost of domestication" hypothesis. Particularly, we find that 62.4% of deleterious SNPs in domestic chickens are maintained in heterozygous states and masked as recessive alleles, challenging the power of modern breeding programs to effectively eliminate these genetic loads. Finally, we suggest that positive selection decreases the incidence but increases the frequency of deleterious SNPs in domestic chicken genomes. CONCLUSION: This study reveals a new landscape of demographic history and genomic changes associated with chicken domestication and provides insight into the evolutionary genomic profiles of domesticated animals managed under modern human selection.
Assuntos
Galinhas , Domesticação , Animais , Animais Domésticos/genética , Galinhas/genética , Genoma , Genômica , HumanosRESUMO
In Indian montane system, human populations often exhibit an unparallel social organization where inter-caste marriages are still not common. This attribute affects the demography and population genetic structure of the resident populations. Further, human populations residing in the mountains in India are poorly studied for their genetic make-up and allele distribution patterns. In the present study, we genotyped 594 unrelated individuals using PowerPlex® 21 System (Promega, USA) from eight different populations belonging to 12 districts of Himachal Pradesh which differed in ethnicity, language, geography and social organization. Altogether, we obtained 1415 alleles with a mean of 8.84 ± 0.26 alleles per locus and 0.80 mean observed heterozygosity. Locus Penta E showed the highest combined power of discrimination and was found most informative for forensic purposes. Interestingly, phylogenetic analysis grouped the populations of Rajputs, Scheduled castes and Brahmins into one cluster, which indicated a deep genetic admixture in the ancestral populations. This study documents the first-ever report on the population genetic assignment of various castes in Himachal Pradesh and unveils the facts of cryptic gene flow among the diverse castes in the northern hilly state of India. Our results showed a genetic relationship among the various ethno-linguistically diverse populations of India.
Assuntos
Técnicas de Genotipagem/métodos , População Branca/classificação , População Branca/genética , Feminino , Genética Forense , Loci Gênicos , Variação Genética , Genética Populacional , Humanos , Índia/etnologia , Idioma , Masculino , Filogenia , Classe Social , População Branca/etnologiaRESUMO
In this study, we evaluated the genetic diversity indices and forensic parameters of scheduled caste population of Himachal Pradesh, India, at 20 autosomal STR loci. Altogether, 233 alleles were observed with an average of 11.65 ± 0.88 alleles per locus. In exception of locus D13S317, no loci deviated from Hardy Weinberg equilibrium. Locus Penta E was found to be the most polymorphic and discriminative loci. The combined power of discrimination and the combined power of exclusion were 1 and 0.999. Further, we established the phylogenetic relationship between the scheduled caste population of Himachal Pradesh and 14 other populations of India. We found 20 autosomal STR loci used in the present study were polymorphic and can be used in population genetic studies and forensic related case works.