Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Clin Med ; 10(21)2021 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-34768413

RESUMO

This study evaluates the accuracy of drill guides fabricated in medical-grade, biocompatible materials for static, computer-aided implant surgery (sCAIS). The virtually planned drill guides of ten completed patient cases were printed (n = 40) using professional (Material Jetting (MJ)) and consumer-level three-dimensional (3D) printing technologies, namely, Stereolithography (SLA), Fused Filament Fabrication (FFF), and Digital Light Processing (DLP). After printing and post-processing, the drill guides were digitized using an optical scanner. Subsequently, the drill guide's original (reference) data and the surface scans of the digitized 3D-printed drill guide were superimposed to evaluate their incongruencies. The accuracy of the 3D-printed drill guides was calculated by determining the root mean square (RMS) values. Additionally, cast models of the planned cases were used to check that the drill guides fitted manually. The RMS (mean ± SD) values for the accuracy of 3D-printed drill guides were-MJ (0.09 ± 0.01 mm), SLA (0.12 ± 0.02 mm), FFF (0.18 ± 0.04 mm), and DLP (0.25 ± 0.05 mm). Upon a subjective assessment, all drill guides could be mounted on the cast models without hindrance. The results revealed statistically significant differences (p < 0.01) in all except the MJ- and SLA-printed drill guides. Although the measured differences in accuracy were statistically significant, the deviations were negligible from a clinical point of view. Within the limits of this study, we conclude that consumer-level 3D printers can produce surgical guides with a similar accuracy to a high-end, professional 3D printer with reduced costs.

2.
Int J Mol Sci ; 22(16)2021 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-34445228

RESUMO

Recent advancements in medical imaging, virtual surgical planning (VSP), and three-dimensional (3D) printing have potentially changed how today's craniomaxillofacial surgeons use patient information for customized treatments. Over the years, polyetheretherketone (PEEK) has emerged as the biomaterial of choice to reconstruct craniofacial defects. With advancements in additive manufacturing (AM) systems, prospects for the point-of-care (POC) 3D printing of PEEK patient-specific implants (PSIs) have emerged. Consequently, investigating the clinical reliability of POC-manufactured PEEK implants has become a necessary endeavor. Therefore, this paper aims to provide a quantitative assessment of POC-manufactured, 3D-printed PEEK PSIs for cranial reconstruction through characterization of the geometrical, morphological, and biomechanical aspects of the in-hospital 3D-printed PEEK cranial implants. The study results revealed that the printed customized cranial implants had high dimensional accuracy and repeatability, displaying clinically acceptable morphologic similarity concerning fit and contours continuity. From a biomechanical standpoint, it was noticed that the tested implants had variable peak load values with discrete fracture patterns and failed at a mean (SD) peak load of 798.38 ± 211.45 N. In conclusion, the results of this preclinical study are in line with cranial implant expectations; however, specific attributes have scope for further improvements.


Assuntos
Benzofenonas , Sistemas Automatizados de Assistência Junto ao Leito , Polímeros , Impressão Tridimensional , Próteses e Implantes , Crânio/lesões , Humanos , Procedimentos de Cirurgia Plástica
3.
J Clin Med ; 10(16)2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34441859

RESUMO

Pure orbital blowout fractures occur within the confines of the internal orbital wall. Restoration of orbital form and volume is paramount to prevent functional and esthetic impairment. The anatomical peculiarity of the orbit has encouraged surgeons to develop implants with customized features to restore its architecture. This has resulted in worldwide clinical demand for patient-specific implants (PSIs) designed to fit precisely in the patient's unique anatomy. Material extrusion or Fused filament fabrication (FFF) three-dimensional (3D) printing technology has enabled the fabrication of implant-grade polymers such as Polyetheretherketone (PEEK), paving the way for a more sophisticated generation of biomaterials. This study evaluates the FFF 3D printed PEEK orbital mesh customized implants with a metric considering the relevant design, biomechanical, and morphological parameters. The performance of the implants is studied as a function of varying thicknesses and porous design constructs through a finite element (FE) based computational model and a decision matrix based statistical approach. The maximum stress values achieved in our results predict the high durability of the implants, and the maximum deformation values were under one-tenth of a millimeter (mm) domain in all the implant profile configurations. The circular patterned implant (0.9 mm) had the best performance score. The study demonstrates that compounding multi-design computational analysis with 3D printing can be beneficial for the optimal restoration of the orbital floor.

4.
World Neurosurg ; 148: e356-e362, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33418118

RESUMO

BACKGROUND: To develop a novel 3D-printer-assisted method to fabricate patient-specific implants for cranioplasty and to demonstrate its feasibility and its use in 16 consecutive cases. METHODS: We report on 16 consecutive patients who have undergone cranioplasty surgery for an extensive skull defect after decompressive surgery and in which the bone flap was not available. We present the workflow for the implant production using a 3D-printer-assisted molding technique. Preoperative, intraoperative, and postoperative data were analyzed/evaluated. RESULTS: Eleven out of our 16 patients (68.7%) presented with extensive hemispheric bone defects. Indication for initial craniotomy were traumatic brain injury (4; 25%), acute subdural hematoma (4; 25%), ischemic stroke (3; 18.8%), tumor (3; 18.8%), and ruptured aneurysm (2; 12.5%). Median (range) operation time was 121 (89-206) minutes. Median (range) intraoperative blood loss was 300 (100-3300) mL. The mean (range) follow-up period is 6 (0-21) months. Complications occurred in 7 out of our 16 patients (43.8%), in 6 (37.5%) of which a reoperation was required to evacuate an extra-axial hematoma (3; 50%), for shunting of an epidural fluid collection (1; 16.7%), or for skin flap necrosis (1; 16.7%). One patient (16.7%) developed a chronic asymptomatic subdural fluid collection that was stable over the follow-up period. CONCLUSIONS: Our workflow to intraoperatively produce patient-specific implants in a timely manner to cover cranial defects proved to be feasible. The results are cosmetically appealing, and postoperative CT scans show well-fitting implants. As implantable printable substrates are already available, we aim to advance and certify 3D-printed patient-specific implants in the near future.


Assuntos
Craniectomia Descompressiva , Procedimentos de Cirurgia Plástica/métodos , Impressão Tridimensional , Próteses e Implantes , Crânio/cirurgia , Adulto , Idoso , Análise Custo-Benefício , Feminino , Seguimentos , Hematoma/etiologia , Hematoma/cirurgia , Humanos , Imageamento Tridimensional , Masculino , Pessoa de Meia-Idade , Polimetil Metacrilato , Complicações Pós-Operatórias/etiologia , Complicações Pós-Operatórias/cirurgia , Impressão Tridimensional/economia , Próteses e Implantes/economia , Desenho de Prótese , Retalhos Cirúrgicos , Tomografia Computadorizada por Raios X , Adulto Jovem
5.
J Clin Med ; 9(5)2020 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-32429549

RESUMO

Computer-assisted surgery with three-dimensional (3D) printed surgical guides provides more accurate results than free-hand surgery. Steam sterilization could be one of the factors that affect the dimensions of surgical guide resin materials, leading to inaccuracies during surgeries. The purpose of this study was to evaluate the effects of steam sterilization on the dimensional accuracy of indication-specific hollow cube test bodies, manufactured in-house using Class IIa biocompatible resin materials (proprietary and third-party). To evaluate the pre- and post-sterilization dimensional accuracy, root mean square (RMS) values were calculated. The results indicate that, in all the groups, steam sterilization resulted in an overall linear expansion of the photopolymeric resin material, with an increase in outer dimensions and a decrease in inner dimensions. The effects on the dimensional accuracy of test bodies were not statistically significant in all the groups, except PolyJet Glossy (p > 0.05). The overall pre- and post-sterilization RMS values were below 100 and 200 µm, respectively. The highest accuracies were seen in proprietary resin materials, i.e., PolyJet Glossy and SLA-LT, in pre- and post-sterilization measurements, respectively. The dimensional accuracy of third-party resin materials, i.e., SLA-Luxa and SLA-NextDent, were within a comparable range as proprietary materials and can serve as an economical alternative.

6.
J Clin Med ; 9(3)2020 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-32204321

RESUMO

The use of patient-specific implants (PSIs) in craniofacial surgery is often limited due to a lack of expertise and/or production costs. Therefore, a simple and cost-efficient template-based fabrication workflow has been developed to overcome these disadvantages. The aim of this study is to assess the accuracy of PSIs made from their original templates. For a representative cranial defect (CRD) and a temporo-orbital defect (TOD), ten PSIs were made from polymethylmethacrylate (PMMA) using computer-aided design (CAD) and three-dimensional (3D) printing technology. These customized implants were measured and compared with their original 3D printed templates. The implants for the CRD revealed a root mean square (RMS) value ranging from 1.128 to 0.469 mm with a median RMS (Q1 to Q3) of 0.574 (0.528 to 0.701) mm. Those for the TOD revealed an RMS value ranging from 1.079 to 0.630 mm with a median RMS (Q1 to Q3) of 0.843 (0.635 to 0.943) mm. This study demonstrates that a highly precise duplication of PSIs can be achieved using this template-molding workflow. Thus, virtually planned implants can be accurately transferred into haptic PSIs. This workflow appears to offer a sophisticated solution for craniofacial reconstruction and continues to prove itself in daily clinical practice.

7.
In Vivo ; 33(3): 839-842, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31028206

RESUMO

BACKGROUND/AIM: Methods to assess three-dimensionally the breast surface are increasingly used in plastic and reconstructive surgery. The aim of this study was to validate the use of the Structure Sensor 3D scanner (Occipital, Inc., Boulder, CO, USA) connected to an iPad Pro (Apple, Inc., Cupertino, CA, USA) as a novel, inexpensive and handheld three-dimensional scanning process. MATERIALS AND METHODS: Surface images of a medical human female anatomy torso model of rigid plastic were repeatedly acquired with Structure Sensor 3D scanner and compared with those obtained using two clinically established 3D imaging systems. Digital measurements of vector and surface breast distances were analyzed using Mimics® Innovation Suite 20 medical imaging software (Materialise, Leuven, Belgium). RESULTS: The analysis of variance (ANOVA) revealed no statistically significant difference among measurements obtained using different scanning processes for all the variables examined (p>0.05). CONCLUSION: The study demonstrates analogous practicability and reliability for surface image acquisition using the newly introduced Structure Sensor 3D scanner and other clinically established scanners.


Assuntos
Mama/diagnóstico por imagem , Diagnóstico por Imagem , Imageamento Tridimensional , Análise de Variância , Diagnóstico por Imagem/métodos , Diagnóstico por Imagem/normas , Feminino , Humanos , Imageamento Tridimensional/métodos , Imageamento Tridimensional/normas , Reprodutibilidade dos Testes , Tomografia Computadorizada por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA