Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Chemosphere ; 362: 142584, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38866332

RESUMO

The safety and health of aquatic organisms and humans are threatened by the increasing presence of pollutants in the environment. Endocrine disrupting chemicals are common pollutants which affect the function of endocrine and causes adverse effects on human health. These chemicals can disrupt metabolic processes by interacting with hormone receptors upon consumptions by humans or aquatic species. Several studies have reported the presence of endocrine disrupting chemicals in waterbodies, food, air and soil. These chemicals are associated with increasing occurrence of obesity, metabolic disorders, reproductive abnormalities, autism, cancer, epigenetic variation and cardiovascular risk. Conventional treatment processes are expensive, not environment friendly and unable to achieve complete removal of these harmful chemicals. In recent years, biochar from different sources has gained a considerable interest due to their adsorption efficiency with porous structure and large surface areas. biochar derived from lignocellulosic biomass are widely used as sustainable catalysts in soil remediation, carbon sequestration, removal of organic and inorganic pollutants and wastewater treatment. This review conceptualizes the production techniques of biochar from lignocellulosic biomass and explores the functionalization and interaction of biochar with endocrine-disrupting chemicals. This review also identifies the further needs of research. Overall, the environmental and health risks of endocrine-disrupting chemicals can be dealt with by biochar produced from lignocellulosic biomass as a sustainable and prominent approach.


Assuntos
Carvão Vegetal , Disruptores Endócrinos , Recuperação e Remediação Ambiental , Lignina , Carvão Vegetal/química , Disruptores Endócrinos/química , Disruptores Endócrinos/metabolismo , Lignina/química , Humanos , Recuperação e Remediação Ambiental/métodos , Adsorção , Poluentes Ambientais/química , Poluentes Ambientais/metabolismo
2.
Chemosphere ; 352: 141453, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38364916

RESUMO

Polyethylene Terephthalate (PET) is a polymer which is considered as one of the major contaminants to the environment. The PET waste materials can be recycled to produce value-added products. PET can be converted to nanoparticles, nanofibers, nanocomposites, and nano coatings. To extend the applications of PET nanomaterials, understanding its commercialization potential is important. In addition, knowledge about the factors affecting recycling of PET based nanomaterials is essential. The presented review is focused on understanding the PET commercialization aspects, keeping in mind market analysis, growth drivers, regulatory affairs, safety considerations, issues associated with scale-up, manufacturing challenges, economic viability, and cost-effectiveness. In addition, the paper elaborates the challenges associated with the use of PET based nanomaterials. These challenges include PET contamination to water, soil, sediments, and human exposure to PET nanomaterials. Moreover, the paper discusses in detail about the factors affecting PET recycling, commercialization, and circular economy with specific emphasis on life cycle assessment (LCA) of PET recycled nanomaterials.


Assuntos
Nanocompostos , Nanopartículas , Humanos , Polietilenotereftalatos , Reciclagem , Polímeros
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA