Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Ann Rheum Dis ; 81(10): 1453-1464, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35868845

RESUMO

OBJECTIVES: To test the hypothesis that ROSAH (retinal dystrophy, optic nerve oedema, splenomegaly, anhidrosis and headache) syndrome, caused by dominant mutation in ALPK1, is an autoinflammatory disease. METHODS: This cohort study systematically evaluated 27 patients with ROSAH syndrome for inflammatory features and investigated the effect of ALPK1 mutations on immune signalling. Clinical, immunologic and radiographical examinations were performed, and 10 patients were empirically initiated on anticytokine therapy and monitored. Exome sequencing was used to identify a new pathogenic variant. Cytokine profiling, transcriptomics, immunoblotting and knock-in mice were used to assess the impact of ALPK1 mutations on protein function and immune signalling. RESULTS: The majority of the cohort carried the p.Thr237Met mutation but we also identified a new ROSAH-associated mutation, p.Tyr254Cys.Nearly all patients exhibited at least one feature consistent with inflammation including recurrent fever, headaches with meningeal enhancement and premature basal ganglia/brainstem mineralisation on MRI, deforming arthritis and AA amyloidosis. However, there was significant phenotypic variation, even within families and some adults lacked functional visual deficits. While anti-TNF and anti-IL-1 therapies suppressed systemic inflammation and improved quality of life, anti-IL-6 (tocilizumab) was the only anticytokine therapy that improved intraocular inflammation (two of two patients).Patients' primary samples and in vitro assays with mutated ALPK1 constructs showed immune activation with increased NF-κB signalling, STAT1 phosphorylation and interferon gene expression signature. Knock-in mice with the Alpk1 T237M mutation exhibited subclinical inflammation.Clinical features not conventionally attributed to inflammation were also common in the cohort and included short dental roots, enamel defects and decreased salivary flow. CONCLUSION: ROSAH syndrome is an autoinflammatory disease caused by gain-of-function mutations in ALPK1 and some features of disease are amenable to immunomodulatory therapy.


Assuntos
Doenças Hereditárias Autoinflamatórias , NF-kappa B , Proteínas Quinases/genética , Amiloidose , Animais , Estudos de Coortes , Mutação com Ganho de Função , Doenças Hereditárias Autoinflamatórias/genética , Humanos , Inflamação/genética , Camundongos , Mutação , NF-kappa B/genética , NF-kappa B/metabolismo , Proteínas Quinases/metabolismo , Qualidade de Vida , Proteína Amiloide A Sérica , Síndrome , Inibidores do Fator de Necrose Tumoral
2.
Proc Natl Acad Sci U S A ; 114(43): 11368-11373, 2017 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-29073058

RESUMO

Maintaining a robust blood product supply is an essential requirement to guarantee optimal patient care in modern health care systems. However, daily blood product use is difficult to anticipate. Platelet products are the most variable in daily usage, have short shelf lives, and are also the most expensive to produce, test, and store. Due to the combination of absolute need, uncertain daily demand, and short shelf life, platelet products are frequently wasted due to expiration. Our aim is to build and validate a statistical model to forecast future platelet demand and thereby reduce wastage. We have investigated platelet usage patterns at our institution, and specifically interrogated the relationship between platelet usage and aggregated hospital-wide patient data over a recent consecutive 29-mo period. Using a convex statistical formulation, we have found that platelet usage is highly dependent on weekday/weekend pattern, number of patients with various abnormal complete blood count measurements, and location-specific hospital census data. We incorporated these relationships in a mathematical model to guide collection and ordering strategy. This model minimizes waste due to expiration while avoiding shortages; the number of remaining platelet units at the end of any day stays above 10 in our model during the same period. Compared with historical expiration rates during the same period, our model reduces the expiration rate from 10.5 to 3.2%. Extrapolating our results to the ∼2 million units of platelets transfused annually within the United States, if implemented successfully, our model can potentially save ∼80 million dollars in health care costs.


Assuntos
Modelos Estatísticos , Transfusão de Plaquetas/estatística & dados numéricos , Atenção Terciária à Saúde , California , Registros Eletrônicos de Saúde , Custos de Cuidados de Saúde , Humanos , Transfusão de Plaquetas/economia , Atenção Terciária à Saúde/economia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA