RESUMO
Copper (Cu) toxicity is a pressing concern for several soils, especially in organic viticulture. The objective of this work was to assess Cu toxicity on the non-target organism Eisenia fetida, employing both traditional and novel tools for early identification of Cu-induced damages. In addition to traditional tests like avoidance and reproductive toxicity experiments, other tests such as the single cell gel electrophoresis (SCGE) and gut microbiome analysis were evaluated to identify early and more sensitive pollution biomarkers. Four sub-lethal Cu concentrations were studied, and the results showed strong dose-dependent responses by the earthworm avoidance test and the exceeding of habitat threshold limit at the higher Cu doses. An inverse proportionality was observed between reproductive output and soil Cu concentration. Bioaccumulation was not detected in earthworms; soil concentrations of potentially bioavailable Cu were not affected by E. fetida presence or by time. On the contrary, the SCGE test revealed dose-dependent genotoxicity for the 'tail length' parameter already at the second day of Cu exposition. Gut microbiome analysis a modulation of microbial composition, with the most aboundant families being Pectobateriaceae, Comamonadaceae and Microscillaceae. Bacillaceae increased over time and showed adaptability to copper up to 165 mg/kg, while at the highest dose even the sensitive Acetobacteriaceae family was affected. The research provided new insights into the ecotoxicity of Cu sub-lethal doses highlighting both alterations at earthworms' cellular level and changes in their gut microbiota.
Assuntos
Oligoquetos , Poluentes do Solo , Humanos , Animais , Cobre/toxicidade , Cobre/análise , Solo , Oligoquetos/fisiologia , Fazendas , Poluentes do Solo/toxicidade , Poluentes do Solo/análise , Testes de MutagenicidadeRESUMO
Single cell gel electrophoresis (SCGE), also known as comet assay is a widely used method to detect DNA damage. Its use is nonetheless subjected to some pitfalls, due to differences in experimental set-up, to operator-dependent variability and to quantification of the comets, which is usually accomplished by visual scoring or by image-analysis software. Biological variability in the extent of DNA damage must be taken into account particularly regarding in vivo studies. In the present paper we propose an improved methodology where major features are: a) cryopreservation of lymphocytes collected at different time points and simultaneous analysis in a single run; b) use of an internal control on each slide; c) development of a custom-made software with semi - automated image analysis in order to overcome operator dependent variability. Cryopreservation was accomplished by storing lymphocytes in liquid nitrogen in a solution commonly used for preserving vital cells to be reinfused. We found that this procedure did not alter DNA after 2 and 4 months of storage. The use of quality control from a batch of aliquoted lymphocytes from a healthy donor on each slide, enabled to highlight possible experimental anomalies as well as verify inter-experimental variability. Moreover, by using a newly developed software able to automatically recognise comets we minimised operator-dependent variability in the scoring process. This improved methodology is proposed for longitudinal in vivo studies and in the present work its application made it possible to assess a significant increase of DNA in pediatric Down Syndrome patients compared to healthy controls of the same age.