Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Nature ; 562(7728): 519-525, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30305731

RESUMO

The food system is a major driver of climate change, changes in land use, depletion of freshwater resources, and pollution of aquatic and terrestrial ecosystems through excessive nitrogen and phosphorus inputs. Here we show that between 2010 and 2050, as a result of expected changes in population and income levels, the environmental effects of the food system could increase by 50-90% in the absence of technological changes and dedicated mitigation measures, reaching levels that are beyond the planetary boundaries that define a safe operating space for humanity. We analyse several options for reducing the environmental effects of the food system, including dietary changes towards healthier, more plant-based diets, improvements in technologies and management, and reductions in food loss and waste. We find that no single measure is enough to keep these effects within all planetary boundaries simultaneously, and that a synergistic combination of measures will be needed to sufficiently mitigate the projected increase in environmental pressures.


Assuntos
Agricultura/métodos , Agricultura/tendências , Meio Ambiente , Abastecimento de Alimentos , Desenvolvimento Sustentável , Mudança Climática , Produtos Agrícolas/metabolismo , Nitrogênio/metabolismo , Fósforo/metabolismo , Incerteza
2.
Proc Natl Acad Sci U S A ; 115(15): 3876-3881, 2018 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-29581313

RESUMO

The biodiversity-ecosystem functioning (BEF) literature provides strong evidence of the biophysical basis for the potential profitability of greater diversity but does not address questions of optimal management. BEF studies typically focus on the ecosystem outputs produced by randomly assembled communities that only differ in their biodiversity levels, measured by indices such as species richness. Landholders, however, do not randomly select species to plant; they choose particular species that collectively maximize profits. As such, their interest is not in comparing the average performance of randomly assembled communities at each level of biodiversity but rather comparing the best-performing communities at each diversity level. Assessing the best-performing mixture requires detailed accounting of species' identities and relative abundances. It also requires accounting for the financial cost of individual species' seeds, and the economic value of changes in the quality, quantity, and variability of the species' collective output-something that existing multifunctionality indices fail to do. This study presents an assessment approach that integrates the relevant factors into a single, coherent framework. It uses ecological production functions to inform an economic model consistent with the utility-maximizing decisions of a potentially risk-averse private landowner. We demonstrate the salience and applicability of the framework using data from an experimental grassland to estimate production relationships for hay and carbon storage. For that case, our results suggest that even a risk-neutral, profit-maximizing landowner would favor a highly diverse mix of species, with optimal species richness falling between the low levels currently found in commercial grasslands and the high levels found in natural grasslands.


Assuntos
Agricultura/economia , Biodiversidade , Poaceae/crescimento & desenvolvimento , Ecologia/economia , Ecossistema , Pradaria , Modelos Biológicos , Poaceae/classificação
3.
Nature ; 546(7656): 73-81, 2017 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-28569796

RESUMO

Tens of thousands of species are threatened with extinction as a result of human activities. Here we explore how the extinction risks of terrestrial mammals and birds might change in the next 50 years. Future population growth and economic development are forecasted to impose unprecedented levels of extinction risk on many more species worldwide, especially the large mammals of tropical Africa, Asia and South America. Yet these threats are not inevitable. Proactive international efforts to increase crop yields, minimize land clearing and habitat fragmentation, and protect natural lands could increase food security in developing nations and preserve much of Earth's remaining biodiversity.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais/tendências , Extinção Biológica , Animais , Mapeamento Geográfico , Atividades Humanas , Humanos , Medição de Risco
4.
Sci Adv ; 3(4): e1601880, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28435876

RESUMO

Carbon storage by ecosystems is valuable for climate protection. Biodiversity conservation may help increase carbon storage, but the value of this influence has been difficult to assess. We use plant, soil, and ecosystem carbon storage data from two grassland biodiversity experiments to show that greater species richness increases economic value: Increasing species richness from 1 to 10 had twice the economic value of increasing species richness from 1 to 2. The marginal value of each additional species declined as species accumulated, reflecting the nonlinear relationship between species richness and plant biomass production. Our demonstration of the economic value of biodiversity for enhancing carbon storage provides a foundation for assessing the value of biodiversity for decisions about land management. Combining carbon storage with other ecosystem services affected by biodiversity may well enhance the economic arguments for conservation even further.

5.
Proc Natl Acad Sci U S A ; 114(15): 3945-3950, 2017 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-28351981

RESUMO

Economic incentives to harvest a species usually diminish as its abundance declines, because harvest costs increase. This prevents harvesting to extinction. A known exception can occur if consumer demand causes a declining species' harvest price to rise faster than costs. This threat may affect rare and valuable species, such as large land mammals, sturgeons, and bluefin tunas. We analyze a similar but underappreciated threat, which arises when the geographic area (range) occupied by a species contracts as its abundance declines. Range contractions maintain the local densities of declining populations, which facilitates harvesting to extinction by preventing abundance declines from causing harvest costs to rise. Factors causing such range contractions include schooling, herding, or flocking behaviors-which, ironically, can be predator-avoidance adaptations; patchy environments; habitat loss; and climate change. We use a simple model to identify combinations of range contractions and price increases capable of causing extinction from profitable overharvesting, and we compare these to an empirical review. We find that some aquatic species that school or forage in patchy environments experience sufficiently severe range contractions as they decline to allow profitable harvesting to extinction even with little or no price increase; and some high-value declining aquatic species experience severe price increases. For terrestrial species, the data needed to evaluate our theory are scarce, but available evidence suggests that extinction-enabling range contractions may be common among declining mammals and birds. Thus, factors causing range contraction as abundance declines may pose unexpectedly large extinction risks to harvested species.


Assuntos
Extinção Biológica , Pesqueiros/economia , Modelos Biológicos , Animais , Custos e Análise de Custo , Ecossistema , Densidade Demográfica
6.
Proc Natl Acad Sci U S A ; 108(50): 20260-4, 2011 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-22106295

RESUMO

Global food demand is increasing rapidly, as are the environmental impacts of agricultural expansion. Here, we project global demand for crop production in 2050 and evaluate the environmental impacts of alternative ways that this demand might be met. We find that per capita demand for crops, when measured as caloric or protein content of all crops combined, has been a similarly increasing function of per capita real income since 1960. This relationship forecasts a 100-110% increase in global crop demand from 2005 to 2050. Quantitative assessments show that the environmental impacts of meeting this demand depend on how global agriculture expands. If current trends of greater agricultural intensification in richer nations and greater land clearing (extensification) in poorer nations were to continue, ~1 billion ha of land would be cleared globally by 2050, with CO(2)-C equivalent greenhouse gas emissions reaching ~3 Gt y(-1) and N use ~250 Mt y(-1) by then. In contrast, if 2050 crop demand was met by moderate intensification focused on existing croplands of underyielding nations, adaptation and transfer of high-yielding technologies to these croplands, and global technological improvements, our analyses forecast land clearing of only ~0.2 billion ha, greenhouse gas emissions of ~1 Gt y(-1), and global N use of ~225 Mt y(-1). Efficient management practices could substantially lower nitrogen use. Attainment of high yields on existing croplands of underyielding nations is of great importance if global crop demand is to be met with minimal environmental impacts.


Assuntos
Agricultura/métodos , Conservação dos Recursos Naturais , Abastecimento de Alimentos , Internacionalidade , Clima , Produtos Agrícolas/economia , Abastecimento de Alimentos/economia , Produto Interno Bruto
7.
Proc Natl Acad Sci U S A ; 106(6): 2077-82, 2009 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-19188587

RESUMO

Environmental impacts of energy use can impose large costs on society. We quantify and monetize the life-cycle climate-change and health effects of greenhouse gas (GHG) and fine particulate matter (PM(2.5)) emissions from gasoline, corn ethanol, and cellulosic ethanol. For each billion ethanol-equivalent gallons of fuel produced and combusted in the US, the combined climate-change and health costs are $469 million for gasoline, $472-952 million for corn ethanol depending on biorefinery heat source (natural gas, corn stover, or coal) and technology, but only $123-208 million for cellulosic ethanol depending on feedstock (prairie biomass, Miscanthus, corn stover, or switchgrass). Moreover, a geographically explicit life-cycle analysis that tracks PM(2.5) emissions and exposure relative to U.S. population shows regional shifts in health costs dependent on fuel production systems. Because cellulosic ethanol can offer health benefits from PM(2.5) reduction that are of comparable importance to its climate-change benefits from GHG reduction, a shift from gasoline to cellulosic ethanol has greater advantages than previously recognized. These advantages are critically dependent on the source of land used to produce biomass for biofuels, on the magnitude of any indirect land use that may result, and on other as yet unmeasured environmental impacts of biofuels.


Assuntos
Fontes Geradoras de Energia/economia , Gasolina/economia , Efeito Estufa , Custos de Cuidados de Saúde , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/economia , Etanol , Gasolina/efeitos adversos , Humanos , Emissões de Veículos
8.
Proc Natl Acad Sci U S A ; 103(30): 11206-10, 2006 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-16837571

RESUMO

Negative environmental consequences of fossil fuels and concerns about petroleum supplies have spurred the search for renewable transportation biofuels. To be a viable alternative, a biofuel should provide a net energy gain, have environmental benefits, be economically competitive, and be producible in large quantities without reducing food supplies. We use these criteria to evaluate, through life-cycle accounting, ethanol from corn grain and biodiesel from soybeans. Ethanol yields 25% more energy than the energy invested in its production, whereas biodiesel yields 93% more. Compared with ethanol, biodiesel releases just 1.0%, 8.3%, and 13% of the agricultural nitrogen, phosphorus, and pesticide pollutants, respectively, per net energy gain. Relative to the fossil fuels they displace, greenhouse gas emissions are reduced 12% by the production and combustion of ethanol and 41% by biodiesel. Biodiesel also releases less air pollutants per net energy gain than ethanol. These advantages of biodiesel over ethanol come from lower agricultural inputs and more efficient conversion of feedstocks to fuel. Neither biofuel can replace much petroleum without impacting food supplies. Even dedicating all U.S. corn and soybean production to biofuels would meet only 12% of gasoline demand and 6% of diesel demand. Until recent increases in petroleum prices, high production costs made biofuels unprofitable without subsidies. Biodiesel provides sufficient environmental advantages to merit subsidy. Transportation biofuels such as synfuel hydrocarbons or cellulosic ethanol, if produced from low-input biomass grown on agriculturally marginal land or from waste biomass, could provide much greater supplies and environmental benefits than food-based biofuels.


Assuntos
Fontes Geradoras de Energia/economia , Etanol/economia , Combustíveis Fósseis/economia , Agricultura/economia , Agricultura/métodos , Poluentes Atmosféricos , Poluição do Ar , Biomassa , Meio Ambiente , Gasolina , Humanos , Petróleo , Glycine max , Emissões de Veículos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA