Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Eur Radiol ; 33(1): 461-471, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35771247

RESUMO

OBJECTIVES: The Prostate Imaging Quality (PI-QUAL) score is a new metric to evaluate the diagnostic quality of multiparametric magnetic resonance imaging (MRI) of the prostate. This study assesses the impact of an intervention, namely a prostate MRI quality training lecture, on the participant's ability to apply PI-QUAL. METHODS: Sixteen participants (radiologists, urologists, physicists, and computer scientists) of varying experience in reviewing diagnostic prostate MRI all assessed the image quality of ten examinations from different vendors and machines. Then, they attended a dedicated lecture followed by a hands-on workshop on MRI quality assessment using the PI-QUAL score. Five scans assessed by the participants were evaluated in the workshop using the PI-QUAL score for teaching purposes. After the course, the same participants evaluated the image quality of a new set of ten scans applying the PI-QUAL score. Results were assessed using receiver operating characteristic analysis. The reference standard was the PI-QUAL score assessed by one of the developers of PI-QUAL. RESULTS: There was a significant improvement in average area under the curve for the evaluation of image quality from baseline (0.59 [95 % confidence intervals: 0.50-0.66]) to post-teaching (0.96 [0.92-0.98]), an improvement of 0.37 [0.21-0.41] (p < 0.001). CONCLUSIONS: A teaching course (dedicated lecture + hands-on workshop) on PI-QUAL significantly improved the application of this scoring system to assess the quality of prostate MRI examinations. KEY POINTS: • A significant improvement in the application of PI-QUAL for the assessment of prostate MR image quality was observed after an educational intervention. • Appropriate training on image quality can be delivered to those involved in the acquisition and interpretation of prostate MRI. • Further investigation will be needed to understand the impact on improving the acquisition of high-quality diagnostic prostate MR examinations.


Assuntos
Imageamento por Ressonância Magnética Multiparamétrica , Neoplasias da Próstata , Masculino , Humanos , Próstata/diagnóstico por imagem , Próstata/patologia , Bolsas de Estudo , Neoplasias da Próstata/patologia , Imageamento por Ressonância Magnética/métodos , Estudos Retrospectivos
2.
Med Phys ; 47(6): 2337-2349, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32141080

RESUMO

PURPOSE: Magnetic resonance imaging (MRI)-guided percutaneous cryotherapy of abdominal lesions, an established procedure, uses MRI to guide and monitor the cryoablation of lesions. Methods to precisely guide cryotherapy probes with a minimum amount of trial-and-error are yet to be established. To aid physicians in attaining precise probe alignment without trial-and-error, a body-mounted motorized cryotherapy-probe alignment device (BMCPAD) with motion compensation was clinically tested in this study. The study also compared the contribution of body motion and organ motion compensation to the guidance accuracy of a body-mounted probe alignment device. METHODS: The accuracy of guidance using the BMCPAD was prospectively measured during MRI-guided percutaneous cryotherapies before insertion of the probes. Clinical parameters including patient age, types of anesthesia, depths of the target, and organ sites of target were collected. By using MR images of the target organs and fiducial markers embedded in the BMCPAD, we retrospectively simulated the guidance accuracy with body motion compensation, organ motion compensation, and no compensation. The collected data were analyzed to test the impact of motion compensation on the guidance accuracy. RESULTS: Thirty-seven physical guidance of probes were prospectively recorded for sixteen completed cases. The accuracy of physical guidance using the BMCPAD was 13.4 ± 11.1 mm. The simulated accuracy of guidance with body motion compensation, organ motion compensation, and no compensation was 2.4 ± 2.9 mm, 2.2 ± 1.6 mm, and 3.5 ± 2.9 mm, respectively. Data analysis revealed that the body motion compensation and organ motion compensation individually impacted the improvement in the accuracy of simulated guidance. Moreover, the difference in the accuracy of guidance either by body motion compensation or organ motion compensation was not statistically significant. The major clinical parameters impacting the accuracy of guidance were the body and organ motions. Patient age, types of anesthesia, depths of the target, and organ sites of target did not influence the accuracy of guidance using BMCPAD. The magnitude of body surface movement and organ movement exhibited mutual statistical correlation. CONCLUSIONS: The BMCPAD demonstrated guidance accuracy comparable to that of previously reported devices for CT-guided procedures. The analysis using simulated motion compensation revealed that body motion compensation and organ motion compensation individually impact the improvement in the accuracy of device-guided cryotherapy probe alignment. Considering the correlation between body and organ movements, we also determined that body motion compensation using the ring fiducial markers in the BMCPAD can be solely used to address both body and organ motions in MRI-guided cryotherapy.


Assuntos
Marcadores Fiduciais , Imageamento por Ressonância Magnética , Crioterapia , Humanos , Movimento (Física) , Estudos Retrospectivos
3.
Int J Comput Assist Radiol Surg ; 11(6): 1133-42, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27038962

RESUMO

PURPOSE: Contrast-enhanced MR images are widely used to confirm the adequacy of ablation margin after liver ablation for early prediction of local recurrence. However, quantitative assessment of the ablation margin by comparing pre- and post-procedural images remains challenging. We developed and tested a novel method for three-dimensional quantitative assessment of ablation margin based on non-rigid image registration and 3D distance map. METHODS: Our method was tested with pre- and post-procedural MR images acquired in 21 patients who underwent image-guided percutaneous liver ablation. The two images were co-registered using non-rigid intensity-based registration. After the tumor and ablation volumes were segmented, target volume coverage, percent of tumor coverage, and Dice similarity coefficient were calculated as metrics representing overall adequacy of ablation. In addition, 3D distance map around the tumor was computed and superimposed on the ablation volume to identify the area with insufficient margins. For patients with local recurrences, the follow-up images were registered to the post-procedural image. Three-dimensional minimum distance between the recurrence and the areas with insufficient margins was quantified. RESULTS: The percent tumor coverage for all nonrecurrent cases was 100 %. Five cases had tumor recurrences, and the 3D distance map revealed insufficient tumor coverage or a 0-mm margin. It also showed that two recurrences were remote to the insufficient margin. CONCLUSIONS: Non-rigid registration and 3D distance map allow us to quantitatively evaluate the adequacy of the ablation margin after percutaneous liver ablation. The method may be useful to predict local recurrences immediately following ablation procedure.


Assuntos
Carcinoma Hepatocelular/cirurgia , Ablação por Cateter/métodos , Imageamento Tridimensional/métodos , Neoplasias Hepáticas/cirurgia , Imageamento por Ressonância Magnética/métodos , Margens de Excisão , Recidiva Local de Neoplasia/epidemiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Carcinoma Hepatocelular/diagnóstico por imagem , Meios de Contraste , Criocirurgia , Feminino , Humanos , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/secundário , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA