Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
2.
JAMA Netw Open ; 5(10): e2236053, 2022 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-36219441

RESUMO

Importance: The global impact of COVID-19 has led to an increased need to continuously assess disease surveillance tools. The utility of SARS-CoV-2 serologic tools in determining immunity levels across different age groups and locations in helping to quickly assess the burden of COVID-19 with significant health policy implications is unknown. Objective: To determine the prevalence of SARS-CoV-2 antibodies with respect to the age group and sex of participants. Design, Setting, and Participants: A cross-sectional survey of 4904 individuals across 12 states with high and low COVID-19 disease burden in Nigeria was carried out between June 29 and August 21, 2021. Main Outcomes and Measures: Enzyme-linked immunosorbent assay was used for the detection of specific SARS-CoV-2 immunoglobulin G and immunoglobulin M antibodies, such as the nucleocapsid protein-NCP and spike protein S1. Interviewer-administered questionnaires provided information on participants' history of disease and associated risk factors. Results: A total of 4904 individuals participated in the study (3033 were female [61.8%]; mean [SD] age, 26.7 [6.51] years). A high seroprevalence of SARS-CoV-2 (78.9%) was obtained. Seropositivity was consistent across the states surveyed, ranging from 69.8% in Lagos to 87.7% in Borno. There was no association between sex and seropositivity (female, 2414 [79.6%]; male, 1456 [77.8%]; P = .61); however, an association was noted between age and seropositivity, with the peak prevalence observed in participants aged 15 to 19 years (616 [83.6%]; P = .001). Similarly, loss of appetite (751 [82.3%]; P = .04) and smell (309 [84.4%]; P = .01) were associated with seropositivity. Conclusions and Relevance: In this cross-sectional study, a high SARS-CoV-2 seroprevalence was obtained among the study population during the low level of vaccination at the time of the survey. Thus, there is a need for both an efficacy and antibody neutralization test study to ascertain the efficacy of the antibody detected and the potential for herd immunity in Nigeria.


Assuntos
COVID-19 , SARS-CoV-2 , Adulto , COVID-19/epidemiologia , Efeitos Psicossociais da Doença , Estudos Transversais , Feminino , Humanos , Imunoglobulina G , Imunoglobulina M , Masculino , Nigéria/epidemiologia , Proteínas do Nucleocapsídeo , Estudos Soroepidemiológicos , Glicoproteína da Espícula de Coronavírus
3.
BMJ Glob Health ; 5(10)2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33033053

RESUMO

Infectious disease outbreaks pose major threats to human health and security. Countries with robust capacities for preventing, detecting and responding to outbreaks can avert many of the social, political, economic and health system costs of such crises. The Global Health Security Index (GHS Index)-the first comprehensive assessment and benchmarking of health security and related capabilities across 195 countries-recently found that no country is sufficiently prepared for epidemics or pandemics. The GHS Index can help health security stakeholders identify areas of weakness, as well as opportunities to collaborate across sectors, collectively strengthen health systems and achieve shared public health goals. Some scholars have recently offered constructive critiques of the GHS Index's approach to scoring and ranking countries; its weighting of select indicators; its emphasis on transparency; its focus on biosecurity and biosafety capacities; and divergence between select country scores and corresponding COVID-19-associated caseloads, morbidity, and mortality. Here, we (1) describe the practical value of the GHS Index; (2) present potential use cases to help policymakers and practitioners maximise the utility of the tool; (3) discuss the importance of scoring and ranking; (4) describe the robust methodology underpinning country scores and ranks; (5) highlight the GHS Index's emphasis on transparency and (6) articulate caveats for users wishing to use GHS Index data in health security research, policymaking and practice.


Assuntos
Saúde Global , Medidas de Segurança/organização & administração , Benchmarking/organização & administração , Betacoronavirus , COVID-19 , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/mortalidade , Infecções por Coronavirus/prevenção & controle , Humanos , Liderança , Pandemias/prevenção & controle , Pneumonia Viral/epidemiologia , Pneumonia Viral/mortalidade , Pneumonia Viral/prevenção & controle , SARS-CoV-2
4.
N Engl J Med ; 379(18): 1745-1753, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30332564

RESUMO

During 2018, an unusual increase in Lassa fever cases occurred in Nigeria, raising concern among national and international public health agencies. We analyzed 220 Lassa virus genomes from infected patients, including 129 from the 2017-2018 transmission season, to understand the viral populations underpinning the increase. A total of 14 initial genomes from 2018 samples were generated at Redeemer's University in Nigeria, and the findings were shared with the Nigerian Center for Disease Control in real time. We found that the increase in cases was not attributable to a particular Lassa virus strain or sustained by human-to-human transmission. Instead, the data were consistent with ongoing cross-species transmission from local rodent populations. Phylogenetic analysis also revealed extensive viral diversity that was structured according to geography, with major rivers appearing to act as barriers to migration of the rodent reservoir.


Assuntos
Genoma Viral , Febre Lassa/virologia , Vírus Lassa/genética , RNA Viral/análise , Adolescente , Adulto , Animais , Teorema de Bayes , Reservatórios de Doenças , Feminino , Variação Genética , Humanos , Febre Lassa/epidemiologia , Febre Lassa/transmissão , Masculino , Cadeias de Markov , Pessoa de Meia-Idade , Nigéria/epidemiologia , Filogenia , Filogeografia , Roedores , Análise de Sequência de RNA , Zoonoses/transmissão
7.
Biomedica ; 22(2): 178-210, 2002 Jun.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-12152484

RESUMO

In the last two decades, yellow fever re-emerged with vehemence to constitute a major public health problem in Africa. The disease has brought untold hardship and indescribable misery among different populations in Africa. It is one of Africa's stumbling blocks to economic and social development. Despite landmark achievements made in the understanding of the epidemiology of yellow fever disease and the availability of a safe and efficacious vaccine, yellow fever remains a major public health problem in both Africa and America where the disease affects annually an estimated 200,000 persons causing an estimated 30,000 deaths. Africa contributes more than 90% of global yellow fever morbidity and mortality. Apart from the severity in morbidity and mortality, which are grossly under reported, successive outbreaks of yellow fever and control measures have disrupted existing health care delivery services, overstretched scarce internal resources, fatigued donor assistance and resulted in gross wastage of vaccines. Recent epidemics of yellow fever in Africa have affected predominantly children under the age of fifteen years. Yellow fever disease can be easily controlled. Two examples from Africa suffice to illustrate this point. Between 1939 and 1952, yellow fever virtually disappeared in parts of Africa, where a systematic mass vaccination programme was in place. More recently, following the 1978-1979 yellow fever epidemic in the Gambia, a mass yellow fever vaccination programme was carried out, with a 97% coverage of the population over 6 months of age. Subsequently, yellow fever vaccination was added to the EPI Programme. The Gambia has since then maintained a coverage of over 80%, without a reported case of yellow fever, despite being surrounded by Senegal which experienced yellow fever outbreaks in 1995 and 1996. The resurgence of yellow fever in Africa and failure to control the disease has resulted from a combination of several factors, including: 1) collapse of health care delivery systems; 2) lack of appreciation of the full impact of yellow fever disease on the social and economic development of the affected communities; 3) insufficient political commitment to yellow fever control by governments of endemic countries; 4) poor or inadequate disease surveillance; 5) inappropriate disease control measures, and 6) preventable poverty coupled with misplaced priorities in resource allocation. Yellow fever can be controlled in Africa within the next 10 years, if African governments seize the initiative for yellow fever control by declaring an uncompromising resolve to control the disease, the governments back up their resolve with an unrelenting commitment and unwavering political will through adequate budgetary allocations for yellow fever control activities, and international organisations, such as WHO, UNICEF, GAVI, etc., provide support and technical leadership and guidance to yellow fever at risk countries. Over a ten-year period, of stage-by-stage mass yellow fever vaccination campaigns, integrated with successful routine immunisation, Africa can bring yellow fever under control. Subsequently, for yellow fever to cease being a public health problem, Africa must maintain at least an annual 80% yellow fever vaccine coverage of children under the age of 1 year, and sustain a reliable disease surveillance system with a responsive disease control programme. This can be achieved at an affordable annual expenditure of less than US$1.00 per person per year, with a reordering of priorities.


Assuntos
Doenças Transmissíveis Emergentes/prevenção & controle , Febre Amarela/prevenção & controle , África/epidemiologia , Doenças Transmissíveis Emergentes/diagnóstico , Doenças Transmissíveis Emergentes/epidemiologia , Saúde Global , Humanos , Febre Amarela/diagnóstico , Febre Amarela/epidemiologia , Vírus da Febre Amarela/classificação , Vírus da Febre Amarela/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA