Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Total Environ ; 844: 156857, 2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-35760183

RESUMO

Multiple stressors threaten bee health, a major one being pesticides. Bees are simultaneously exposed to multiple pesticides that can cause both lethal and sublethal effects. Risk assessment and most research on bee health, however, focus on lethal individual effects. Here, we performed a systematic literature review and meta-analysis that summarizes and re-interprets the available qualitative and quantitative information on the lethal, sublethal, and combined toxicity of a comprehensive range of pesticides on bees. We provide results (1970-2019) for multiple bee species (Bombus, Osmia, Megachile, Melipona, Partamona, Scaptotrigona), although most works focused on Apis mellifera L. (78 %). Our harmonised results document the lethal toxicity of pesticides in bees (n = 377 pesticides) and the types of sublethal testing methods and related effects that cause a sublethal effect (n = 375 sublethal experiments). We identified the most common combinations of pesticides and mode of actions tested, and summarize the experimental methods, magnitude of the interactions, and robustness of available data (n = 361 experiments). We provide open access searchable, comprehensive, and integrated list of pesticides and their levels causing lethal, sublethal, and combined effects. We report major data gaps related to pesticide's sublethal (71 %) and combined (e.g., ~99 %) toxicity. We identified pesticides and mode of actions of greatest concern in terms of sublethal (chlorothalonil, pymetrozine, glyphosate; neonicotinoids) and combined (tau-fluvalinate combinations; acetylcholinesterase inhibitors and neonicotinoids) effects. Although certain pesticides have faced regulatory restrictions in specific countries (chlorothalonil, pymetrozine, neonicotinoids), most are still widely used worldwide (e.g., glyphosate). This work aims at facilitating the implementation of more comprehensive and harmonised research and risk assessments, considering sublethal and combined effects. To ensure safeguarding pollinators and the environment, we advocate for a more refined and holistic assessment that do not only focus on lethality but uses harmonised methods to test sublethal and relevant combinations.


Assuntos
Inseticidas , Praguicidas , Acetilcolinesterase , Animais , Abelhas , Neonicotinoides , Praguicidas/toxicidade , Medição de Risco
2.
EFSA J ; 19(5): e06607, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34025804

RESUMO

The European Parliament requested EFSA to develop a holistic risk assessment of multiple stressors in honey bees. To this end, a systems-based approach that is composed of two core components: a monitoring system and a modelling system are put forward with honey bees taken as a showcase. Key developments in the current scientific opinion (including systematic data collection from sentinel beehives and an agent-based simulation) have the potential to substantially contribute to future development of environmental risk assessments of multiple stressors at larger spatial and temporal scales. For the monitoring, sentinel hives would be placed across representative climatic zones and landscapes in the EU and connected to a platform for data storage and analysis. Data on bee health status, chemical residues and the immediate or broader landscape around the hives would be collected in a harmonised and standardised manner, and would be used to inform stakeholders, and the modelling system, ApisRAM, which simulates as accurately as possible a honey bee colony. ApisRAM would be calibrated and continuously updated with incoming monitoring data and emerging scientific knowledge from research. It will be a supportive tool for beekeeping, farming, research, risk assessment and risk management, and it will benefit the wider society. A societal outlook on the proposed approach is included and this was conducted with targeted social science research with 64 beekeepers from eight EU Member States and with members of the EU Bee Partnership. Gaps and opportunities are identified to further implement the approach. Conclusions and recommendations are made on a way forward, both for the application of the approach and its use in a broader context.

3.
Environ Int ; 133(Pt B): 105256, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31683157

RESUMO

Bees are exposed to a wide range of multiple chemicals "chemical mixtures" from anthropogenic (e.g. plant protection products or veterinary products) or natural origin (e.g. mycotoxins, plant toxins). Quantifying the relative impact of multiple chemicals on bee health compared with other environmental stressors (e.g. varroa, viruses, and nutrition) has been identified as a priority to support the development of holistic risk assessment methods. Here, extensive literature searches and data collection of available laboratory studies on combined toxicity data for binary mixtures of pesticides and non-chemical stressors has been performed for honey bees (Apis mellifera), wild bees (Bombus spp.) and solitary bee species (Osmia spp.). From 957 screened publications, 14 publications provided 218 binary mixture toxicity data mostly for acute mortality (lethal dose: LD50) after contact exposure (61%), with fewer studies reporting chronic oral toxicity (20%) and acute oral LC50 values (19%). From the data collection, available dose response data for 92 binary mixtures were modelled using a Toxic Unit (TU) approach and the MIXTOX modelling tool to test assumptions of combined toxicity i.e. concentration addition (CA), and interactions (i.e. synergism, antagonism). The magnitude of interactions was quantified as the Model Deviation Ratio (MDR). The CA model applied to 17% of cases while synergism and antagonism were observed for 72% (MDR > 1.25) and 11% (MDR < 0.83) respectively. Most synergistic effects (55%) were observed as interactions between sterol-biosynthesis-inhibiting (SBI) fungicides and insecticide/acaricide. The mechanisms behind such synergistic effects of binary mixtures in bees are known to involve direct cytochrome P450 (CYP) inhibition, resulting in an increase in internal dose and toxicity of the binary mixture. Moreover, bees are known to have the lowest number of CYP copies and other detoxification enzymes in the insect kingdom. In the light of these findings, occurrence of these binary mixtures in relevant crops (frequency and concentrations) would need to be investigated. Addressing this exposure dimension remains critical to characterise the likelihood and plausibility of such interactions to occur under field realistic conditions. Finally, data gaps and further work for the development of risk assessment methods to assess multiple stressors in bees including chemicals and non-chemical stressors in bees are discussed.


Assuntos
Abelhas , Fungicidas Industriais/toxicidade , Praguicidas/toxicidade , Animais , Dose Letal Mediana , Medição de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA