Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Environ Pollut ; 350: 123934, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38588971

RESUMO

In the framework of a safe-by-design approach, we previously assessed the eco-safety of nanostructured cellulose sponge (CNS) leachate on sea urchin reproduction. It impaired gamete quality, gamete fertilization competence, and embryo development possibly due to the leaching of chemical additives used during the CNS synthesis process. To extend this observation and identify the component(s) that contribute to CNS ecotoxicity, in the present study, we individually screened the cytotoxic effects on sea urchin Arbacia lixula and Paracentrotus lividus gametes and embryos of the three main constituents of CNS, namely cellulose nanofibers, citric acid, and branched polyethylenimine. The study aimed to minimize any potential safety risk of these components and to obtain an eco-safe CNS. Among the three CNS constituents, branched polyethylenimine resulted in the most toxic agent. Indeed, it affected the physiology and fertilization competence of male and female gametes as well as embryo development in both sea urchin species. These results are consistent with those previously reported for CNS leachate. Moreover, the characterisation of CNS leachate confirmed the presence of detectable branched polyethylenimine in the conditioned seawater even though in a very limited amount. Altogether, these data indicate that the presence of branched polyethylenimine is a cause-effect associated with a significant risk in CNS formulations due to its leaching upon contact with seawater. Nevertheless, the suggested safety protocol consisting of consecutive leaching treatments and conditioning of CNS in seawater can successfully ameliorate the CNS ecotoxicity while maintaining the efficacy of its sorbent properties supporting potential environmental applications.


Assuntos
Celulose , Ácido Cítrico , Nanofibras , Polietilenoimina , Reprodução , Ouriços-do-Mar , Poluentes Químicos da Água , Animais , Celulose/toxicidade , Celulose/química , Polietilenoimina/toxicidade , Polietilenoimina/química , Ácido Cítrico/química , Ácido Cítrico/toxicidade , Poluentes Químicos da Água/toxicidade , Reprodução/efeitos dos fármacos , Nanofibras/toxicidade , Nanofibras/química , Feminino , Ouriços-do-Mar/efeitos dos fármacos , Masculino , Paracentrotus/efeitos dos fármacos
2.
Environ Pollut ; 334: 122169, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37437755

RESUMO

Nanostructured cellulose sponges (CNS) have been developed as eco-friendly and sustainable engineered materials for marine environmental remediation. Despite their functionality, sensitivity, efficiency and specificity have been proved, CNS application is still limited since their environmental safety (eco-safety) has not been completely assessed. In this study, CNS were allowed to leach in natural seawater simulating the remediation process condition and the eco-safety of CNS leachate on sea urchin reproduction has been assessed by carrying out a multi-response integrated approach, combining standardized ecotoxicity tests, innovative bioassays and gamete quality assessment. Overall, the ecotoxicity data indicate that CNS leachate affects gamete quality, gamete fertilisation competence, and embryo development probably associated with the release of chemical additives used during the synthesis process. However, in the framework of the eco-design approach, consecutive leaching treatments and conditioning of CNS in seawater open the route for a new safety protocol successfully solving the ecotoxicity while maintaining CNS sorbent properties. A safe environmental application of the resulting conditioned CNS for seawater pollution remediation is envisaged.


Assuntos
Recuperação e Remediação Ambiental , Ouriços-do-Mar , Animais , Reprodução , Células Germinativas , Água do Mar/química
3.
Biol Res ; 55(1): 34, 2022 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-36371313

RESUMO

BACKGROUND: The assessment of oocyte quality is, nowadays, a major challenge in aquaculture, oocyte cryopreservation, and environmental science. Oocyte quality is a determining factor in fertilization and embryo development; however, there is still a lack of rapid and sensitive cellular markers for its assessment. Currently, its estimation is predominantly based on morphological analysis, which is subjective and does not consistently reflect the developmental competence of the oocytes. Despite several recent studies investigating molecular markers related to oocyte quality, methods currently available for their determination pose various technical challenges and limitations. In this study, we developed a novel approach based on fluorescence spectroscopy to assess different intrinsic physiological parameters that can be employed to evaluate egg quality in marine invertebrates that are widely used as animal models such as sea urchins and mussels. RESULTS: Different physiological parameters, such as viability, mitochondrial activity, intracellular ROS levels, plasma membrane lipid peroxidation, and intracellular pH, for egg quality evaluation have been successfully assessed in sea urchins and mussels by using specific fluorescent dyes and detecting the fluorescent signals in eggs through fluorescence spectroscopy. CONCLUSIONS: Based on our findings, we propose these physiological markers as useful predictors of egg quality in marine invertebrates; they can be estimated rapidly, selectively, and sensitively by employing this novel approach, which, due to the speed of analysis, the low cost, and easy use can be considered a powerful analytical tool for the egg quality assessment.


Assuntos
Desenvolvimento Embrionário , Oócitos , Animais , Espectrometria de Fluorescência , Oócitos/metabolismo , Ouriços-do-Mar , Criopreservação/métodos
4.
Biol. Res ; 55: 34-34, 2022. ilus, tab, graf
Artigo em Inglês | LILACS | ID: biblio-1403572

RESUMO

BACKGROUND: The assessment of oocyte quality is, nowadays, a major challenge in aquaculture, oocyte cryopreservation, and environmental science. Oocyte quality is a determining factor in fertilization and embryo development; however, there is still a lack of rapid and sensitive cellular markers for its assessment. Currently, its estimation is pre-dominantly based on morphological analysis, which is subjective and does not consistently reflect the developmental competence of the oocytes. Despite several recent studies investigating molecular markers related to oocyte quality, methods currently available for their determination pose various technical challenges and limitations. In this study, we developed a novel approach based on fluorescence spectroscopy to assess different intrinsic physiological parameters that can be employed to evaluate egg quality in marine invertebrates that are widely used as animal models such as sea urchins and mussels. RESULTS: Different physiological parameters, such as viability, mitochondrial activity, intracellular ROS levels, plasma membrane lipid peroxidation, and intracellular pH, for egg quality evaluation have been successfully assessed in sea urchins and mussels by using specific fluorescent dyes and detecting the fluorescent signals in eggs through fluorescence spectroscopy. CONCLUSIONS: Based on our findings, we propose these physiological markers as useful predictors of egg quality in marine invertebrates; they can be estimated rapidly, selectively, and sensitively by employing this novel approach, which, due to the speed of analysis, the low cost, and easy use can be considered a powerful analytical tool for the egg quality assessment.


Assuntos
Animais , Oócitos/metabolismo , Desenvolvimento Embrionário , Ouriços-do-Mar , Espectrometria de Fluorescência , Criopreservação/métodos
5.
Mar Environ Res ; 160: 104984, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32907722

RESUMO

The aim of the present work is to demonstrate the practical importance of a multidisciplinary approach and weighted criteria to synthesize and integrate different typologies of data (or lines of evidence, LOEs), including chemical levels in marine sediments, their bioavailability to specific indicator species, ecotoxicological effects measured through subcellular biomarkers and batteries of bioassays, and potential impacts of pollution on local benthic communities. The area of Bagnoli (Gulf of Naples, Southern Italy) was selected as a model case-study, as it is a coastal area chronically impacted by massive industrial contamination (trace metals and hydrocarbons), and dismissed decades ago without any subsequent remediation or habitat restoration. The results of each LOE were elaborated to provide specific hazard indices before their overall integration in a weight of evidence (WOE) evaluation. Levels of some trace metals and PAHs revealed a severe contamination in the entire study area. Bioavailability of hydrocarbons was evident particularly for high molecular weight PAHs, which also caused significant variations of cellular biomarkers, such as cytochrome P450 metabolization in fish, lysosomal membrane destabilization in mussels, genotoxic effects both in fish and molluscs. The results of a battery of bioassays indicated less marked responses compared to those obtained from chemical and biomarkers analyses, with acute toxicity still present in sediments close to the source of contamination. The analysis of benthic assemblages showed limited evidence of impact in the whole area, indicating a good functioning of local ecosystems at chronic contamination. Overall, the results of this study confirm the need of combining chemical and biological data, the quantitative characterization of various typologies of hazard and the importance of assessing an integrated environmental WOE risk, to orientate specific and scientifically-supported management options in industrialized areas.


Assuntos
Sedimentos Geológicos , Gestão de Riscos , Poluentes Químicos da Água , Animais , Ecossistema , Monitoramento Ambiental , Itália
6.
Ecotoxicol Environ Saf ; 147: 407-412, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28888124

RESUMO

The viability of spermatozoa is a crucial parameter to evaluate their quality that is an important issue in ecotoxicological studies. Here, a new method has been developed to rapidly determine the viability of spermatozoa in three marine invertebrates: the ascidian Ciona intestinalis, the sea urchin Paracentrotus lividus and the mollusc Mytilus galloprovincialis. This method employed the dual DNA fluorescent staining coupled with spectrofluorimetric analysis. The dual fluorescent staining used the SYBR-14 stained live spermatozoa and propidium iodide stained degenerated cells that had lost membrane integrity. Stain uptake was assessed by confocal microscopy and then the percentage of live and dead spermatozoa was quantified by spectrofluorimetric analysis. The microscopic examination revealed three populations of spermatozoa: living-SYBR-14 stained, dead-PI stained, and dying-doubly stained spermatozoa. The fluorescence emission peak values recorded in a spectrofluorimeter provide the portion of live and dead spermatozoa showing a significant negative correlation. The stain combination was further validated using known ratios of live and dead spermatozoa. The present study demonstrated that the dual DNA staining with SYBR-14 and propidium iodide was effective in assessing viability of spermatozoa in marine invertebrates and that spectrofluorimetric analysis can be successfully employed to evaluate the percentage of live and dead spermatozoa. The method develop herein is simple, accurate, rapid, sensitive, and cost-effective, so it could be a useful tool by which marine pollutants may be screened for spermiotoxicity.


Assuntos
Organismos Aquáticos/citologia , Monitoramento Ambiental/métodos , Corantes Fluorescentes/química , Invertebrados/citologia , Espectrometria de Fluorescência/métodos , Espermatozoides/efeitos dos fármacos , Poluição da Água/efeitos adversos , Animais , Organismos Aquáticos/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , DNA/química , Invertebrados/efeitos dos fármacos , Masculino , Microscopia Confocal , Compostos Orgânicos/química , Propídio/química , Especificidade da Espécie , Espermatozoides/citologia , Coloração e Rotulagem
7.
PLoS One ; 10(4): e0123074, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25875759

RESUMO

Chlorothalonil is a widely used biocide in antifouling paint formulation that replaces tin-based compounds after their definitive ban. Although chlorothalonil inputs into the marine environment have significantly increased in recent years, little is known about its effect on marine animals and in particular on their reproductive processes. In this line, the aim of the present study was to investigate the effects of chlorothalonil exposure on the gamete physiology, fertilization rate and transmissible damage to offspring in the marine invertebrate Ciona intestinalis (ascidians). To identify a possible mechanism of action of chlorothalonil, electrophysiological techniques were used to study the impact on oocyte membrane excitability and on the electrical events occurring at fertilization. The pre-exposure of spermatozoa and oocytes to chlorothalonil did not affect the fertilization rate but caused damage to the offspring by inducing larval malformation. The highest toxicity was observed when fertilization was performed in chlorothalonil solutions with the lowest EC50 value. In particular, it was observed that low chlorothalonil concentrations interfered with embryo development and led to abnormal larvae, whereas high concentrations arrested embryo formation. In mature oocytes, a decrease in the amplitudes of the sodium and fertilization currents was observed, suggesting an involvement of plasma membrane ion currents in the teratogenic mechanism of chlorothalonil action. The risk estimation confirmed that the predicted no-effect concentration (PNEC) exceeded the predicted effect concentration (PEC), thus indicating that chlorothalonil may pose a risk to aquatic species.


Assuntos
Fungicidas Industriais/toxicidade , Nitrilas/toxicidade , Oócitos/efeitos dos fármacos , Urocordados/efeitos dos fármacos , Animais , Feminino , Fertilização/efeitos dos fármacos , Masculino , Reprodução/efeitos dos fármacos , Medição de Risco , Espermatozoides/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA