Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Radiat Prot Dosimetry ; 193(3-4): 155-164, 2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-33822208

RESUMO

Shielded garments are widely recommended for occupational radiation protection in diagnostic and interventional radiology. This study investigated a novel method for efficiently verifying shielded garment integrity while simultaneously acquiring data for lead-equivalence measurements, using two-dimensional topogram images from computed tomography (CT) scanners. This method was tested against more-conventional measurements with superficial and orthovoltage radiotherapy treatment beams, for 12 shielded garments containing 3 different lead-free shielding materials. Despite some energy-dependent results, all shielded garments approximately achieved their specified lead-equivalence for the energy range expected during clinical use for fluoroscopy procedures, except for three shielded skirts that required two layers of material to be overlapped at the front. All lead-equivalence measurements from CT topograms agreed with or conservatively underestimated the kV narrow-beam results. This method is potentially useful for independently assessing the shielding properties of new shielded garments and performing annual checks for damage or degradation of existing shielded garments.


Assuntos
Roupa de Proteção , Proteção Radiológica , Imagens de Fantasmas , Doses de Radiação , Espalhamento de Radiação , Tomografia , Raios X
2.
Phys Eng Sci Med ; 43(2): 609-616, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32524448

RESUMO

To calculate small field output correction factors, [Formula: see text], for Gafchromic EBT3 film using Monte Carlo simulations. These factors were determined for a Novalis Trilogy linear accelerator equipped with Brainlab circular cones with diameters of 4.0 to 30.0 mm. The BEAMnrc Monte Carlo code was used to simulate the Novalis Trilogy linear accelerator and the Brainlab cones with diameters 4.0 to 30 mm. The DOSXYZnrc code was used to simulate Gafchromic EBT3 film with the atomic composition specified by the manufacturer. Small field correction factors were calculated according to new IAEA TRS-483 Code of Practice for small field dosimetry. The depth of calculation was 10 cm and a source to surface distance of 100 cm. The X-ray beam used in the simulations was a 6 MV SRS. The correction factors were then used to determine field output factors with Gafchromic EBT3 film. These field output factors were validated using three solid state detectors and applying correction factors from the TRS-483 Code of Practice. The solid state detectors were IBA SFD diode, PTW 60018 SRS diode and PTW 60019 microDiamond. The Monte Carlo calculated output correction factors, [Formula: see text], for Gafchromic EBT3 film ranged between 0.998 to 1.004 for Brainlab circular cones with diameters between 4.0 and 30.0 mm. The uncertainty for these factors was 2.0%. The field output factors obtained with Gafchromic EBT3 film were within 2% of the mean results obtained with the three solid state detectors. For field sizes 4 mm diameter and above, Gafchromic EBT3 film has field output correction factors within 1% of unity. Therefore, Gafchromic EBT3 film can be considered to be correction less and supports the assumption made about this film in the TRS-483 Code of Practice.


Assuntos
Algoritmos , Método de Monte Carlo , Radiometria , Radiocirurgia , Simulação por Computador
3.
Aquat Toxicol ; 158: 63-74, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25461746

RESUMO

Cerium nanoparticles (nCeO2) are widely used in everyday products, as fuel and paint additives. Meanwhile, very few studies on nCeO2 sublethal effects on aquatic organisms are available. We tried to fill this knowledge gap by investigating short-term effects of nCeO2 at environmentally realistic concentrations on two freshwater invertebrates; the amphipod Gammarus roeseli and the bivalve Dreissena polymorpha, using an integrated multibiomarker approach to detect early adverse effects of nCeO2 on organism biology. Differences in the behaviour of the organisms and of nanoparticles in the water column led to differential nCeO2 bioaccumulations, G. roeseli accumulating more cerium than D. polymorpha. Exposure to nCeO2 led to decreases in the size of the lysosomal system, catalase activity and lipoperoxidation in mussel digestive glands that could result from nCeO2 antioxidant properties, but also negatively impacted haemolymph ion concentrations. At the same time, no strong adverse effects of nCeO2 could be observed on G. roeseli. Further experiments will be necessary to confirm the absence of severe nCeO2 adverse effects in long-term environmentally realistic conditions.


Assuntos
Anfípodes/efeitos dos fármacos , Cério/toxicidade , Dreissena/efeitos dos fármacos , Nanopartículas/toxicidade , Poluentes Químicos da Água/toxicidade , Anfípodes/metabolismo , Animais , Biomarcadores/análise , Catalase/metabolismo , Cério/metabolismo , Dreissena/metabolismo , Ativação Enzimática/efeitos dos fármacos , Água Doce , Nanopartículas/metabolismo , Oxirredução/efeitos dos fármacos , Poluentes Químicos da Água/metabolismo
4.
Med Phys ; 41(11): 111702, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25370616

RESUMO

PURPOSE: Small field x-ray beam dosimetry is difficult due to lack of lateral electronic equilibrium, source occlusion, high dose gradients, and detector volume averaging. Currently, there is no single definitive detector recommended for small field dosimetry. The objective of this work was to evaluate the performance of a new commercial synthetic diamond detector, namely, the PTW 60019 microDiamond, for the dosimetry of small x-ray fields as used in stereotactic radiosurgery (SRS). METHODS: Small field sizes were defined by BrainLAB circular cones (4-30 mm diameter) on a Novalis Trilogy linear accelerator and using the 6 MV SRS x-ray beam mode for all measurements. Percentage depth doses (PDDs) were measured and compared to an IBA SFD and a PTW 60012 E diode. Cross profiles were measured and compared to an IBA SFD diode. Field factors, ΩQclin,Qmsr (fclin,fmsr) , were calculated by Monte Carlo methods using BEAMnrc and correction factors, kQclin,Qmsr (fclin,fmsr) , were derived for the PTW 60019 microDiamond detector. RESULTS: For the small fields of 4-30 mm diameter, there were dose differences in the PDDs of up to 1.5% when compared to an IBA SFD and PTW 60012 E diode detector. For the cross profile measurements the penumbra values varied, depending upon the orientation of the detector. The field factors, ΩQclin,Qmsr (fclin,fmsr) , were calculated for these field diameters at a depth of 1.4 cm in water and they were within 2.7% of published values for a similar linear accelerator. The corrections factors, kQclin,Qmsr (fclin,fmsr) , were derived for the PTW 60019 microDiamond detector. CONCLUSIONS: The authors conclude that the new PTW 60019 microDiamond detector is generally suitable for relative dosimetry in small 6 MV SRS beams for a Novalis Trilogy linear equipped with circular cones.


Assuntos
Radiometria/métodos , Radiocirurgia/métodos , Algoritmos , Diamante/química , Humanos , Método de Monte Carlo , Aceleradores de Partículas , Planejamento da Radioterapia Assistida por Computador , Água/química , Raios X
5.
Med Phys ; 41(10): 101701, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25281940

RESUMO

PURPOSE: Two diodes which do not require correction factors for small field relative output measurements are designed and validated using experimental methodology. This was achieved by adding an air layer above the active volume of the diode detectors, which canceled out the increase in response of the diodes in small fields relative to standard field sizes. METHODS: Due to the increased density of silicon and other components within a diode, additional electrons are created. In very small fields, a very small air gap acts as an effective filter of electrons with a high angle of incidence. The aim was to design a diode that balanced these perturbations to give a response similar to a water-only geometry. Three thicknesses of air were placed at the proximal end of a PTW 60017 electron diode (PTWe) using an adjustable "air cap". A set of output ratios (ORDet (fclin) ) for square field sizes of side length down to 5 mm was measured using each air thickness and compared to ORDet (fclin) measured using an IBA stereotactic field diode (SFD). kQclin,Qmsr (fclin,fmsr) was transferred from the SFD to the PTWe diode and plotted as a function of air gap thickness for each field size. This enabled the optimal air gap thickness to be obtained by observing which thickness of air was required such that kQclin,Qmsr (fclin,fmsr) was equal to 1.00 at all field sizes. A similar procedure was used to find the optimal air thickness required to make a modified Sun Nuclear EDGE detector (EDGEe) which is "correction-free" in small field relative dosimetry. In addition, the feasibility of experimentally transferring kQclin,Qmsr (fclin,fmsr) values from the SFD to unknown diodes was tested by comparing the experimentally transferred kQclin,Qmsr (fclin,fmsr) values for unmodified PTWe and EDGEe diodes to Monte Carlo simulated values. RESULTS: 1.0 mm of air was required to make the PTWe diode correction-free. This modified diode (PTWeair) produced output factors equivalent to those in water at all field sizes (5-50 mm). The optimal air thickness required for the EDGEe diode was found to be 0.6 mm. The modified diode (EDGEeair) produced output factors equivalent to those in water, except at field sizes of 8 and 10 mm where it measured approximately 2% greater than the relative dose to water. The experimentally calculated kQclin,Qmsr (fclin,fmsr) for both the PTWe and the EDGEe diodes (without air) matched Monte Carlo simulated results, thus proving that it is feasible to transfer kQclin,Qmsr (fclin,fmsr) from one commercially available detector to another using experimental methods and the recommended experimental setup. CONCLUSIONS: It is possible to create a diode which does not require corrections for small field output factor measurements. This has been performed and verified experimentally. The ability of a detector to be "correction-free" depends strongly on its design and composition. A nonwater-equivalent detector can only be "correction-free" if competing perturbations of the beam cancel out at all field sizes. This should not be confused with true water equivalency of a detector.


Assuntos
Radiometria/instrumentação , Ar , Algoritmos , Simulação por Computador , Elétrons , Desenho de Equipamento , Estudos de Viabilidade , Teste de Materiais , Método de Monte Carlo , Radiometria/métodos , Incerteza , Água
6.
Phys Med Biol ; 59(15): N129-37, 2014 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-25049236

RESUMO

Ultrasound has been previously investigated as an alternative readout method for irradiated polymer gel dosimeters, with authors reporting varying dose responses. We extend previous work utilizing a new computed tomography ultrasound scanner comprising of two identical 5 MHz, 128-element linear-array ultrasound transducers, co-axially aligned and submerged in water as a coupling agent, with rotational of the gel dosimeter between the transducers facilitated by a robotic arm. We have investigated the dose-dependence of both ultrasound bulk attenuation and broadband ultrasound attenuation (BUA) for the PAGAT gel dosimeter. The ultrasound bulk attenuation dose sensitivity was found to be 1.46  ±  0.04 dB m( -1) Gy( -1), being in agreement with previously published results for PAG and MAGIC gels. BUA was also found to be dose dependent and was measured to be 0.024  ±  0.003 dB MHz( -1) Gy( -1); the advantage of BUA being its insensitivity to frequency-independent attenuation mechanisms including reflection and refraction, thereby minimizing image reconstruction artefacts.


Assuntos
Géis/efeitos da radiação , Radiometria/métodos , Ultrassom/métodos , Radiometria/instrumentação , Tomografia Computadorizada por Raios X/métodos , Ultrassom/instrumentação
7.
Med Phys ; 41(4): 041707, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24694127

RESUMO

PURPOSE: This work introduces the concept of very small field size. Output factor (OPF) measurements at these field sizes require extremely careful experimental methodology including the measurement of dosimetric field size at the same time as each OPF measurement. Two quantifiable scientific definitions of the threshold of very small field size are presented. METHODS: A practical definition was established by quantifying the effect that a 1 mm error in field size or detector position had on OPFs and setting acceptable uncertainties on OPF at 1%. Alternatively, for a theoretical definition of very small field size, the OPFs were separated into additional factors to investigate the specific effects of lateral electronic disequilibrium, photon scatter in the phantom, and source occlusion. The dominant effect was established and formed the basis of a theoretical definition of very small fields. Each factor was obtained using Monte Carlo simulations of a Varian iX linear accelerator for various square field sizes of side length from 4 to 100 mm, using a nominal photon energy of 6 MV. RESULTS: According to the practical definition established in this project, field sizes ≤ 15 mm were considered to be very small for 6 MV beams for maximal field size uncertainties of 1 mm. If the acceptable uncertainty in the OPF was increased from 1.0% to 2.0%, or field size uncertainties are 0.5 mm, field sizes ≤ 12 mm were considered to be very small. Lateral electronic disequilibrium in the phantom was the dominant cause of change in OPF at very small field sizes. Thus the theoretical definition of very small field size coincided to the field size at which lateral electronic disequilibrium clearly caused a greater change in OPF than any other effects. This was found to occur at field sizes ≤ 12 mm. Source occlusion also caused a large change in OPF for field sizes ≤ 8 mm. Based on the results of this study, field sizes ≤ 12 mm were considered to be theoretically very small for 6 MV beams. CONCLUSIONS: Extremely careful experimental methodology including the measurement of dosimetric field size at the same time as output factor measurement for each field size setting and also very precise detector alignment is required at field sizes at least ≤ 12 mm and more conservatively ≤ 15 mm for 6 MV beams. These recommendations should be applied in addition to all the usual considerations for small field dosimetry, including careful detector selection.


Assuntos
Método de Monte Carlo , Radioterapia/métodos , Elétrons , Aceleradores de Partículas , Fótons/uso terapêutico , Radiometria , Radioterapia/instrumentação
8.
Australas Phys Eng Sci Med ; 37(2): 303-9, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24648244

RESUMO

Stereotactic radiosurgery treatments involve the delivery of very high doses for a small number of fractions. To date, there is limited data in terms of the skin dose for the very small field sizes used in these treatments. In this work, we determine relative surface doses for small size circular collimators as used in stereotactic radiosurgery treatments. Monte Carlo calculations were performed using the BEAMnrc code with a model of the Novalis Trilogy linear accelerator and the BrainLab circular collimators. The surface doses were calculated at the ICRP skin dose depth of 70 µm all using the 6 MV SRS x-ray beam. The calculated surface doses varied between 15 and 12 % with decreasing values as the field size increased from 4 to 30 mm. In comparison, surface doses were measured using Gafchromic EBT3 film positioned at the surface of a Virtual Water phantom. The absolute agreement between calculated and measured surface doses was better than 2.0 % which is well within the uncertainties of the Monte Carlo calculations and the film measurements. Based on these results, we have shown that the Gafchromic EBT3 film is suitable for surface dose estimates in very small size fields as used in SRS.


Assuntos
Dosimetria Fotográfica/métodos , Método de Monte Carlo , Dosagem Radioterapêutica , Simulação por Computador , Imagens de Fantasmas , Radiocirurgia
9.
Phys Med Biol ; 58(13): 4501-12, 2013 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-23760107

RESUMO

Due to their small collecting volume, diodes are commonly used in small field dosimetry. However, the relative sensitivity of a diode increases with decreasing small field size. Conversely, small air gaps have been shown to cause a significant decrease in the sensitivity of a detector as the field size is decreased. Therefore, this study uses Monte Carlo simulations to look at introducing air upstream to diodes such that they measure with a constant sensitivity across all field sizes in small field dosimetry. Varying thicknesses of air were introduced onto the upstream end of two commercial diodes (PTW 60016 photon diode and PTW 60017 electron diode), as well as a theoretical unenclosed silicon chip using field sizes as small as 5 mm × 5 mm. The metric D(w,Q)/D(Det,Q) used in this study represents the ratio of the dose to a point of water to the dose to the diode active volume, for a particular field size and location. The optimal thickness of air required to provide a constant sensitivity across all small field sizes was found by plotting D(w,Q)/D(Det,Q) as a function of introduced air gap size for various field sizes, and finding the intersection point of these plots. That is, the point at which D(w,Q)/D(Det,Q) was constant for all field sizes was found. The optimal thickness of air was calculated to be 3.3, 1.15 and 0.10 mm for the photon diode, electron diode and unenclosed silicon chip, respectively. The variation in these results was due to the different design of each detector. When calculated with the new diode design incorporating the upstream air gap, k(f(clin),f(msr))(Q(clin),Q(msr)) was equal to unity to within statistical uncertainty (0.5%) for all three diodes. Cross-axis profile measurements were also improved with the new detector design. The upstream air gap could be implanted on the commercial diodes via a cap consisting of the air cavity surrounded by water equivalent material. The results for the unclosed silicon chip show that an ideal small field dosimetry diode could be created by using a silicon chip with a small amount of air above it.


Assuntos
Artefatos , Desenho Assistido por Computador , Modelos Estatísticos , Método de Monte Carlo , Radiometria/instrumentação , Semicondutores , Simulação por Computador , Doses de Radiação
10.
Australas Phys Eng Sci Med ; 35(4): 497-502, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23188699

RESUMO

Cloud computing allows for vast computational resources to be leveraged quickly and easily in bursts as and when required. Here we describe a technique that allows for Monte Carlo radiotherapy dose calculations to be performed using GEANT4 and executed in the cloud, with relative simulation cost and completion time evaluated as a function of machine count. As expected, simulation completion time decreases as 1/n for n parallel machines, and relative simulation cost is found to be optimal where n is a factor of the total simulation time in hours. Using the technique, we demonstrate the potential usefulness of cloud computing as a solution for rapid Monte Carlo simulation for radiotherapy dose calculation without the need for dedicated local computer hardware as a proof of principal.


Assuntos
Internet , Modelos Estatísticos , Método de Monte Carlo , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Assistida por Computador/métodos , Simulação por Computador , Dosagem Radioterapêutica , Espalhamento de Radiação
11.
Phys Med Biol ; 57(21): 6947-60, 2012 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-23044638

RESUMO

The purpose of this study was to investigate the effect of very small air gaps (less than 1 mm) on the dosimetry of small photon fields used for stereotactic treatments. Measurements were performed with optically stimulated luminescent dosimeters (OSLDs) for 6 MV photons on a Varian 21iX linear accelerator with a Brainlab µMLC attachment for square field sizes down to 6 mm × 6 mm. Monte Carlo simulations were performed using EGSnrc C++ user code cavity. It was found that the Monte Carlo model used in this study accurately simulated the OSLD measurements on the linear accelerator. For the 6 mm field size, the 0.5 mm air gap upstream to the active area of the OSLD caused a 5.3% dose reduction relative to a Monte Carlo simulation with no air gap. A hypothetical 0.2 mm air gap caused a dose reduction >2%, emphasizing the fact that even the tiniest air gaps can cause a large reduction in measured dose. The negligible effect on an 18 mm field size illustrated that the electronic disequilibrium caused by such small air gaps only affects the dosimetry of the very small fields. When performing small field dosimetry, care must be taken to avoid any air gaps, as can be often present when inserting detectors into solid phantoms. It is recommended that very small field dosimetry is performed in liquid water. When using small photon fields, sub-millimetre air gaps can also affect patient dosimetry if they cannot be spatially resolved on a CT scan. However the effect on the patient is debatable as the dose reduction caused by a 1 mm air gap, starting out at 19% in the first 0.1 mm behind the air gap, decreases to <5% after just 2 mm, and electronic equilibrium is fully re-established after just 5 mm.


Assuntos
Ar , Radiometria/métodos , Medições Luminescentes , Método de Monte Carlo
12.
Phys Med Biol ; 57(11): 3359-69, 2012 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-22572565

RESUMO

The quality assurance of stereotactic radiotherapy and radiosurgery treatments requires the use of small-field dose measurements that can be experimentally challenging. This study used Monte Carlo simulations to establish that PAGAT dosimetry gel can be used to provide accurate, high-resolution, three-dimensional dose measurements of stereotactic radiotherapy fields. A small cylindrical container (4 cm height, 4.2 cm diameter) was filled with PAGAT gel, placed in the parietal region inside a CIRS head phantom and irradiated with a 12-field stereotactic radiotherapy plan. The resulting three-dimensional dose measurement was read out using an optical CT scanner and compared with the treatment planning prediction of the dose delivered to the gel during the treatment. A BEAMnrc/DOSXYZnrc simulation of this treatment was completed, to provide a standard against which the accuracy of the gel measurement could be gauged. The three-dimensional dose distributions obtained from Monte Carlo and from the gel measurement were found to be in better agreement with each other than with the dose distribution provided by the treatment planning system's pencil beam calculation. Both sets of data showed close agreement with the treatment planning system's dose distribution through the centre of the irradiated volume and substantial disagreement with the treatment planning system at the penumbrae. The Monte Carlo calculations and gel measurements both indicated that the treated volume was up to 3 mm narrower, with steeper penumbrae and more variable out-of-field dose, than predicted by the treatment planning system. The Monte Carlo simulations allowed the accuracy of the PAGAT gel dosimeter to be verified in this case, allowing PAGAT gel to be utilized in the measurement of dose from stereotactic and other radiotherapy treatments, with greater confidence in the future.


Assuntos
Método de Monte Carlo , Radiocirurgia/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Cabeça/diagnóstico por imagem , Cabeça/efeitos da radiação , Imagens de Fantasmas , Radiometria , Dosagem Radioterapêutica , Reprodutibilidade dos Testes , Tomografia Computadorizada por Raios X
13.
Australas Phys Eng Sci Med ; 34(1): 83-90, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21424376

RESUMO

The purpose of this work is to validate and automate the use of DYNJAWS; a new component module (CM) in the BEAMnrc Monte Carlo (MC) user code. The DYNJAWS CM simulates dynamic wedges and can be used in three modes; dynamic, step-and-shoot and static. The step-and-shoot and dynamic modes require an additional input file defining the positions of the jaw that constitutes the dynamic wedge, at regular intervals during its motion. A method for automating the generation of the input file is presented which will allow for the more efficient use of the DYNJAWS CM. Wedged profiles have been measured and simulated for 6 and 10 MV photons at three field sizes (5 cm × 5 cm, 10 cm × 10 cm and 20 cm × 20 cm), four wedge angles (15°, 30°, 45° and 60°), at d (max) and at 10 cm depth. Results of this study show agreement between the measured and the MC profiles to within 3% of absolute dose or 3 mm distance to agreement for all wedge angles at both energies and depths. The gamma analysis suggests that dynamic mode is more accurate than the step-and-shoot mode. The DYNJAWS CM is an important addition to the BEAMnrc code and will enable the MC verification of patient treatments involving dynamic wedges.


Assuntos
Algoritmos , Modelos Biológicos , Modelos Estatísticos , Método de Monte Carlo , Radiometria/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Conformacional/métodos , Humanos , Dosagem Radioterapêutica , Sensibilidade e Especificidade
14.
Phys Med Biol ; 55(22): N533-45, 2010 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-21030752

RESUMO

In this study, the feasibility of difference imaging for improving the contrast of electronic portal imaging device (EPID) images is investigated. The difference imaging technique consists of the acquisition of two EPID images (with and without the placement of an additional layer of attenuating medium on the surface of the EPID) and the subtraction of one of these images from the other. The resulting difference image shows improved contrast, compared to a standard EPID image, since it is generated by lower-energy photons. Results of this study show that, firstly, this method can produce images exhibiting greater contrast than is seen in standard megavoltage EPID images and secondly, the optimal thickness of attenuating material for producing a maximum contrast enhancement may vary with phantom thickness and composition. Further studies of the possibilities and limitations of the difference imaging technique, and the physics behind it, are therefore recommended.


Assuntos
Eletrônica , Planejamento da Radioterapia Assistida por Computador/instrumentação , Técnica de Subtração , Artefatos , Cobre , Estudos de Viabilidade , Humanos , Método de Monte Carlo , Imagens de Fantasmas
15.
Phys Med Biol ; 55(17): N451-63, 2010 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-20702922

RESUMO

This work is focussed on developing a commissioning procedure so that a Monte Carlo model, which uses BEAMnrc's standard VARMLC component module, can be adapted to match a specific BrainLAB m3 micro-multileaf collimator (microMLC). A set of measurements are recommended, for use as a reference against which the model can be tested and optimized. These include radiochromic film measurements of dose from small and offset fields, as well as measurements of microMLC transmission and interleaf leakage. Simulations and measurements to obtain microMLC scatter factors are shown to be insensitive to relevant model parameters and are therefore not recommended, unless the output of the linear accelerator model is in doubt. Ultimately, this note provides detailed instructions for those intending to optimize a VARMLC model to match the dose delivered by their local BrainLAB m3 microMLC device.


Assuntos
Neoplasias Encefálicas/radioterapia , Dosimetria Fotográfica/métodos , Método de Monte Carlo , Radiocirurgia/métodos , Radioterapia Conformacional/métodos , Simulação por Computador , Dosimetria Fotográfica/instrumentação , Humanos , Modelos Lineares , Modelos Biológicos , Aceleradores de Partículas/instrumentação , Imagens de Fantasmas , Radiocirurgia/instrumentação , Dosagem Radioterapêutica , Radioterapia Conformacional/instrumentação
16.
Med Phys ; 37(4): 1761-7, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20443498

RESUMO

PURPOSE: The component modules in the standard BEAMnrc istribution may appear to be insufficient to model micro-multileaf collimators that have trifaceted leaf ends and complex leaf profiles. This note indicates, however, that accurate Monte Carlo simulations of radiotherapy beams defined by a complex collimation device can be completed using BEAMnrc's standard VARMLC component module. METHODS: That this simple collimator model can produce spatially and dosimetrically accurate microcollimated fields is illustrated using comparisons with ion chamber and film measurements of the dose deposited by square and irregular fields incident on planar, homogeneous water phantoms. RESULTS: Monte Carlo dose calculations for on-axis and off-axis fields are shown to produce good agreement with experimental values, even on close examination of the penumbrae. CONCLUSIONS: The use of a VARMLC model of the micro-multileaf collimator, along with a commissioned model of the associated linear accelerator, is therefore recommended as an alternative to the development or use of in-house or third-party component modules for simulating stereotactic radiotherapy and radiosurgery treatments. Simulation parameters for the VARMLC model are provided which should allow other researchers to adapt and use this model to study clinical stereotactic radiotherapy treatments.


Assuntos
Dosimetria Fotográfica/métodos , Algoritmos , Simulação por Computador , Desenho de Equipamento , Humanos , Método de Monte Carlo , Aceleradores de Partículas , Imagens de Fantasmas , Doses de Radiação , Radiocirurgia/métodos , Planejamento da Radioterapia Assistida por Computador/instrumentação , Reprodutibilidade dos Testes , Software , Água/química
17.
Phys Med Biol ; 52(13): 3991-4005, 2007 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-17664590

RESUMO

There are a number of gel dosimeter calibration methods in contemporary usage. The present study is a detailed Monte Carlo investigation into the accuracy of several calibration techniques. Results show that for most arrangements the dose to gel accurately reflects the dose to water, with the most accurate method involving the use of a large diameter flask of gel into which multiple small fields of varying dose are directed. The least accurate method was found to be that of a long test tube in a water phantom, coaxial with the beam. The large flask method is also the most straightforward and least likely to introduce errors during the set-up, though, to its detriment, the volume of gel required is much more than other methods.


Assuntos
Géis , Polímeros/química , Radiometria/métodos , Água/química , Calibragem , Modelos Teóricos , Método de Monte Carlo , Imagens de Fantasmas , Fótons , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA