Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Epidemics ; 47: 100775, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38838462

RESUMO

Across many fields, scenario modeling has become an important tool for exploring long-term projections and how they might depend on potential interventions and critical uncertainties, with relevance to both decision makers and scientists. In the past decade, and especially during the COVID-19 pandemic, the field of epidemiology has seen substantial growth in the use of scenario projections. Multiple scenarios are often projected at the same time, allowing important comparisons that can guide the choice of intervention, the prioritization of research topics, or public communication. The design of the scenarios is central to their ability to inform important questions. In this paper, we draw on the fields of decision analysis and statistical design of experiments to propose a framework for scenario design in epidemiology, with relevance also to other fields. We identify six different fundamental purposes for scenario designs (decision making, sensitivity analysis, situational awareness, horizon scanning, forecasting, and value of information) and discuss how those purposes guide the structure of scenarios. We discuss other aspects of the content and process of scenario design, broadly for all settings and specifically for multi-model ensemble projections. As an illustrative case study, we examine the first 17 rounds of scenarios from the U.S. COVID-19 Scenario Modeling Hub, then reflect on future advancements that could improve the design of scenarios in epidemiological settings.


Assuntos
COVID-19 , Técnicas de Apoio para a Decisão , Humanos , COVID-19/epidemiologia , COVID-19/prevenção & controle , COVID-19/transmissão , Previsões , SARS-CoV-2 , Doenças Transmissíveis/epidemiologia , Pandemias/prevenção & controle , Tomada de Decisões , Projetos de Pesquisa
2.
PLOS Glob Public Health ; 4(4): e0003072, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38683820

RESUMO

Community-based serological studies are increasingly relied upon to measure disease burden, identify population immunity gaps, and guide control and elimination strategies; however, there is little understanding of the potential for and impact of sampling biases on outcomes of interest. As part of efforts to quantify measles immunity gaps in Zambia, a community-based serological survey using stratified multi-stage cluster sampling approach was conducted in Ndola and Choma districts in May-June 2022, enrolling 1245 individuals. We carried out a follow-up study among individuals missed from the sampling frame of the serosurvey in July-August 2022, enrolling 672 individuals. We assessed the potential for and impact of biases in the community-based serosurvey by i) estimating differences in characteristics of households and individuals included and excluded (77% vs 23% of households) from the sampling frame of the serosurvey and ii) evaluating the magnitude these differences make on healthcare-seeking behavior, vaccination coverage, and measles seroprevalence. We found that missed households were 20% smaller and 25% less likely to have children. Missed individuals resided in less wealthy households, had different distributions of sex and occupation, and were more likely to seek care at health facilities. Despite these differences, simulating a survey in which missed households were included in the sampling frame resulted in less than a 5% estimated bias in these outcomes. Although community-based studies are upheld as the gold standard study design in assessing immunity gaps and underlying community health characteristics, these findings underscore the fact that sampling biases can impact the results of even well-conducted community-based surveys. Results from these studies should be interpreted in the context of the study methodology and challenges faced during implementation, which include shortcomings in establishing accurate and up-to-date sampling frames. Failure to account for these shortcomings may result in biased estimates and detrimental effects on decision-making.

3.
medRxiv ; 2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37873156

RESUMO

Across many fields, scenario modeling has become an important tool for exploring long-term projections and how they might depend on potential interventions and critical uncertainties, with relevance to both decision makers and scientists. In the past decade, and especially during the COVID-19 pandemic, the field of epidemiology has seen substantial growth in the use of scenario projections. Multiple scenarios are often projected at the same time, allowing important comparisons that can guide the choice of intervention, the prioritization of research topics, or public communication. The design of the scenarios is central to their ability to inform important questions. In this paper, we draw on the fields of decision analysis and statistical design of experiments to propose a framework for scenario design in epidemiology, with relevance also to other fields. We identify six different fundamental purposes for scenario designs (decision making, sensitivity analysis, value of information, situational awareness, horizon scanning, and forecasting) and discuss how those purposes guide the structure of scenarios. We discuss other aspects of the content and process of scenario design, broadly for all settings and specifically for multi-model ensemble projections. As an illustrative case study, we examine the first 17 rounds of scenarios from the U.S. COVID-19 Scenario Modeling Hub, then reflect on future advancements that could improve the design of scenarios in epidemiological settings.

4.
Lancet ; 397(10272): 398-408, 2021 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-33516338

RESUMO

BACKGROUND: The past two decades have seen expansion of childhood vaccination programmes in low-income and middle-income countries (LMICs). We quantify the health impact of these programmes by estimating the deaths and disability-adjusted life-years (DALYs) averted by vaccination against ten pathogens in 98 LMICs between 2000 and 2030. METHODS: 16 independent research groups provided model-based disease burden estimates under a range of vaccination coverage scenarios for ten pathogens: hepatitis B virus, Haemophilus influenzae type B, human papillomavirus, Japanese encephalitis, measles, Neisseria meningitidis serogroup A, Streptococcus pneumoniae, rotavirus, rubella, and yellow fever. Using standardised demographic data and vaccine coverage, the impact of vaccination programmes was determined by comparing model estimates from a no-vaccination counterfactual scenario with those from a reported and projected vaccination scenario. We present deaths and DALYs averted between 2000 and 2030 by calendar year and by annual birth cohort. FINDINGS: We estimate that vaccination of the ten selected pathogens will have averted 69 million (95% credible interval 52-88) deaths between 2000 and 2030, of which 37 million (30-48) were averted between 2000 and 2019. From 2000 to 2019, this represents a 45% (36-58) reduction in deaths compared with the counterfactual scenario of no vaccination. Most of this impact is concentrated in a reduction in mortality among children younger than 5 years (57% reduction [52-66]), most notably from measles. Over the lifetime of birth cohorts born between 2000 and 2030, we predict that 120 million (93-150) deaths will be averted by vaccination, of which 58 million (39-76) are due to measles vaccination and 38 million (25-52) are due to hepatitis B vaccination. We estimate that increases in vaccine coverage and introductions of additional vaccines will result in a 72% (59-81) reduction in lifetime mortality in the 2019 birth cohort. INTERPRETATION: Increases in vaccine coverage and the introduction of new vaccines into LMICs have had a major impact in reducing mortality. These public health gains are predicted to increase in coming decades if progress in increasing coverage is sustained. FUNDING: Gavi, the Vaccine Alliance and the Bill & Melinda Gates Foundation.


Assuntos
Controle de Doenças Transmissíveis , Doenças Transmissíveis/mortalidade , Doenças Transmissíveis/virologia , Modelos Teóricos , Mortalidade/tendências , Anos de Vida Ajustados por Qualidade de Vida , Vacinação , Pré-Escolar , Controle de Doenças Transmissíveis/economia , Controle de Doenças Transmissíveis/estatística & dados numéricos , Doenças Transmissíveis/economia , Análise Custo-Benefício , Países em Desenvolvimento , Feminino , Saúde Global , Humanos , Programas de Imunização , Masculino , Vacinação/economia , Vacinação/estatística & dados numéricos
5.
PLoS Med ; 17(6): e1003144, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32544156

RESUMO

BACKGROUND: COVID-19 could have even more dire consequences in refugees camps than in general populations. Bangladesh has confirmed COVID-19 cases and hosts almost 1 million Rohingya refugees from Myanmar, with 600,000 concentrated in the Kutupalong-Balukhali Expansion Site (mean age, 21 years; standard deviation [SD], 18 years; 52% female). Projections of the potential COVID-19 burden, epidemic speed, and healthcare needs in such settings are critical for preparedness planning. METHODS AND FINDINGS: To explore the potential impact of the introduction of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the Kutupalong-Balukhali Expansion Site, we used a stochastic Susceptible Exposed Infectious Recovered (SEIR) transmission model with parameters derived from emerging literature and age as the primary determinant of infection severity. We considered three scenarios with different assumptions about the transmission potential of SARS-CoV-2. From the simulated infections, we estimated hospitalizations, deaths, and healthcare needs expected, age-adjusted for the Kutupalong-Balukhali Expansion Site age distribution. Our findings suggest that a large-scale outbreak is likely after a single introduction of the virus into the camp, with 61%-92% of simulations leading to at least 1,000 people infected across scenarios. On average, in the first 30 days of the outbreak, we expect 18 (95% prediction interval [PI], 2-65), 54 (95% PI, 3-223), and 370 (95% PI, 4-1,850) people infected in the low, moderate, and high transmission scenarios, respectively. These reach 421,500 (95% PI, 376,300-463,500), 546,800 (95% PI, 499,300-567,000), and 589,800 (95% PI, 578,800-595,600) people infected in 12 months, respectively. Hospitalization needs exceeded the existing hospitalization capacity of 340 beds after 55-136 days, between the low and high transmission scenarios. We estimate 2,040 (95% PI, 1,660-2,500), 2,650 (95% PI, 2,030-3,380), and 2,880 (95% PI, 2,090-3,830) deaths in the low, moderate, and high transmission scenarios, respectively. Due to limited data at the time of analyses, we assumed that age was the primary determinant of infection severity and hospitalization. We expect that comorbidities, limited hospitalization, and intensive care capacity may increase this risk; thus, we may be underestimating the potential burden. CONCLUSIONS: Our findings suggest that a COVID-19 epidemic in a refugee settlement may have profound consequences, requiring large increases in healthcare capacity and infrastructure that may exceed what is currently feasible in these settings. Detailed and realistic planning for the worst case in Kutupalong-Balukhali and all refugee camps worldwide must begin now. Plans should consider novel and radical strategies to reduce infectious contacts and fill health worker gaps while recognizing that refugees may not have access to national health systems.


Assuntos
Infecções por Coronavirus/epidemiologia , Necessidades e Demandas de Serviços de Saúde , Hospitalização , Unidades de Terapia Intensiva , Pneumonia Viral/epidemiologia , Campos de Refugiados , Refugiados , Capacidade de Resposta ante Emergências , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Bangladesh/epidemiologia , Betacoronavirus , COVID-19 , Criança , Pré-Escolar , Simulação por Computador , Infecções por Coronavirus/mortalidade , Infecções por Coronavirus/transmissão , Feminino , Mão de Obra em Saúde , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Modelos Teóricos , Mianmar/etnologia , Pandemias , Pneumonia Viral/mortalidade , Pneumonia Viral/transmissão , SARS-CoV-2 , Adulto Jovem
6.
Lancet Infect Dis ; 20(8): 911-919, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32353347

RESUMO

BACKGROUND: Rapid spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in Wuhan, China, prompted heightened surveillance in Shenzhen, China. The resulting data provide a rare opportunity to measure key metrics of disease course, transmission, and the impact of control measures. METHODS: From Jan 14 to Feb 12, 2020, the Shenzhen Center for Disease Control and Prevention identified 391 SARS-CoV-2 cases and 1286 close contacts. We compared cases identified through symptomatic surveillance and contact tracing, and estimated the time from symptom onset to confirmation, isolation, and admission to hospital. We estimated metrics of disease transmission and analysed factors influencing transmission risk. FINDINGS: Cases were older than the general population (mean age 45 years) and balanced between males (n=187) and females (n=204). 356 (91%) of 391 cases had mild or moderate clinical severity at initial assessment. As of Feb 22, 2020, three cases had died and 225 had recovered (median time to recovery 21 days; 95% CI 20-22). Cases were isolated on average 4·6 days (95% CI 4·1-5·0) after developing symptoms; contact tracing reduced this by 1·9 days (95% CI 1·1-2·7). Household contacts and those travelling with a case were at higher risk of infection (odds ratio 6·27 [95% CI 1·49-26·33] for household contacts and 7·06 [1·43-34·91] for those travelling with a case) than other close contacts. The household secondary attack rate was 11·2% (95% CI 9·1-13·8), and children were as likely to be infected as adults (infection rate 7·4% in children <10 years vs population average of 6·6%). The observed reproductive number (R) was 0·4 (95% CI 0·3-0·5), with a mean serial interval of 6·3 days (95% CI 5·2-7·6). INTERPRETATION: Our data on cases as well as their infected and uninfected close contacts provide key insights into the epidemiology of SARS-CoV-2. This analysis shows that isolation and contact tracing reduce the time during which cases are infectious in the community, thereby reducing the R. The overall impact of isolation and contact tracing, however, is uncertain and highly dependent on the number of asymptomatic cases. Moreover, children are at a similar risk of infection to the general population, although less likely to have severe symptoms; hence they should be considered in analyses of transmission and control. FUNDING: Emergency Response Program of Harbin Institute of Technology, Emergency Response Program of Peng Cheng Laboratory, US Centers for Disease Control and Prevention.


Assuntos
Betacoronavirus/isolamento & purificação , Controle de Doenças Transmissíveis/métodos , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/transmissão , Transmissão de Doença Infecciosa/prevenção & controle , Transmissão de Doença Infecciosa/estatística & dados numéricos , Pneumonia Viral/epidemiologia , Pneumonia Viral/transmissão , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Número Básico de Reprodução , COVID-19 , Criança , Pré-Escolar , China/epidemiologia , Controle de Doenças Transmissíveis/organização & administração , Busca de Comunicante , Infecções por Coronavirus/prevenção & controle , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Pandemias/prevenção & controle , Pneumonia Viral/prevenção & controle , Estudos Retrospectivos , Medição de Risco , SARS-CoV-2 , Adulto Jovem
7.
JAMA Neurol ; 73(6): 684-90, 2016 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-27065313

RESUMO

IMPORTANCE: Few data are available on the natural history of small fiber neuropathy (SNF). Peripheral neuropathy typically follows a length-dependent pattern, leading us to hypothesize that patients with SFN would lose intraepidermal nerve fibers at the distal leg more quickly than at more proximal thigh sites. OBJECTIVE: To compare the longitudinal rate and pattern of intraepidermal nerve fiber density (IENFD) change in idiopathic SFN (iSFN), impaired glucose tolerance-associated SFN (IGT-SFN), and diabetes mellitus-associated SFN (DM-SFN). DESIGN, SETTING, AND PARTICIPANTS: In this longitudinal, case-control study, patients diagnosed as having SFN from January 1, 2002, through December 31, 2010, and age- and sex-matched controls underwent additional evaluation at tertiary outpatient neurology clinics. Participants and healthy controls were evaluated twice separated by at least 2 years. Participants underwent standardized examinations, nerve conduction, and skin biopsy at 3 sites along the leg. A linear mixed-effects model was used to compare rates of IENFD decrease between cause and biopsy site. MAIN OUTCOMES AND MEASURES: We compared the rate of IENFD loss over time in subjects with iSFN, IGT-SFN and DM-SFN as well as the spatiotemporal pattern of IENF loss at different rostal-caudal sites along the leg. RESULTS: Fifty-two participants (25 with iSFN, 13 with IGT-SFN, and 14 with DM-SFN) and 10 healthy controls were evaluated. Mean (SD) ages were 50.9 (12.9), 63.1 (10.4), and 61.6 (11.6) years for the iSFN, IGT-SFN, and DM-SFN groups, respectively. There were 12, 7, and 8 female patients and 13, 6, and 6 male patients in the iSFN, IGT-SFN, and DM-SFN groups, respectively. The mean follow-up time was 24.2, 26.7, and 38.8 months for those with iSFN, IGT-SFN, and DM-SFN, respectively, and 32 months for healthy controls. At baseline, mean (SE) for distal leg IENFD (6.48 [1.06]) was lower than distal thigh (13.32 [1.08]) and proximal thigh IENFD (19.98 [1.07]) (P = .001). In addition, IENFD was significantly lower in patients with DM-SFN and IGT-SFN compared with iSFN at all biopsy sites (P = .001). All 3 neuropathy groups had significant IENFD decrease at follow-up at all 3 sites (P = .002), whereas there was no change in the control group. The mean yearly rates of IENFD change over time at the distal leg, distal thigh, and proximal thigh irrespective of cause are -1.42, -1.59, and -2.8 fibers per millimeter, respectively. The mean slopes of IENFD change over time by cause regardless of biopsy site are -0.179, -0.164, and -0.198 for iSFN, IGT-SFN, and DM-SFN, respectively. No difference was found between SFN groups in the rate of decrease. The rate of IENFD decrease was similar at all 3 biopsy sites. CONCLUSIONS AND RELEVANCE: Similar rates of IENFD decrease irrespective of cause were observed. Epidermal nerve fibers were lost at similar rates in proximal and distal sites, suggesting that SFN is a non-length-dependent terminal axonopathy.


Assuntos
Axônios/patologia , Epiderme/patologia , Fibras Nervosas/patologia , Neuropatia de Pequenas Fibras/diagnóstico , Adulto , Idoso , Análise de Variância , Biópsia , Estudos de Casos e Controles , Feminino , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Condução Nervosa/fisiologia , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA