Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Ann Neurol ; 91(1): 117-130, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34716721

RESUMO

OBJECTIVE: This observational cohort study aims to quantify disease burden over time, establish disease progression rates, and identify factors that may determine the disease course of Leigh syndrome. METHODS: Seventy-two Leigh syndrome children who completed the Newcastle Paediatric Mitochondrial Disease Scale (NPMDS) at baseline at 3.7 years (interquartile range [IQR] = 2.0-7.6) and follow-up assessments at 7.5 years (IQR = 3.7-11.0) in clinics were enrolled. Eighty-two percent of this cohort had a confirmed genetic diagnosis, with pathogenic variants in the MT-ATP6 and SURF1 genes being the most common cause. The total NPMDS scores denoted mild (0-14), moderate (15-25), and severe (>25) disease burden. Detailed clinical, neuroradiological, and molecular genetic findings were also analyzed. RESULTS: The median total NPMDS scores rose significantly (Z = -6.9, p < 0.001), and the percentage of children with severe disease burden doubled (22% → 42%) over 2.6 years of follow-up. Poor function (especially mobility, self-care, communication, feeding, and education) and extrapyramidal features contributed significantly to the disease burden (τb  ≈ 0.45-0.68, p < 0.001). These children also deteriorated to wheelchair dependence (31% → 57%), exclusive enteral feeding (22% → 46%), and one-to-one assistance for self-care (25% → 43%) during the study period. Twelve children (17%) died after their last NPMDS scores were recorded. These children had higher follow-up NPMDS scores (disease burden; p < 0.001) and steeper increase in NPMDS score per annum (disease progression; p < 0.001). Other predictors of poor outcomes include SURF1 gene variants (p < 0.001) and bilateral caudate changes on neuroimaging (p < 0.01). INTERPRETATION: This study has objectively defined the disease burden and progression of Leigh syndrome. Our analysis has also uncovered potential influences on the trajectory of this neurodegenerative condition. ANN NEUROL 2022;91:117-130.


Assuntos
Doença de Leigh , Criança , Pré-Escolar , Estudos de Coortes , Efeitos Psicossociais da Doença , Progressão da Doença , Feminino , Humanos , Lactente , Estudos Longitudinais , Masculino
2.
J Microsc ; 278(2): 89-106, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32277765

RESUMO

Mitochondrial shape and function are known to be linked; therefore, there is a need to combine three-dimensional EM structural analysis with functional analysis. Cytochrome c oxidase labelling is one approach to examine mitochondrial function at the EM level. However, previous efforts to apply this method have had several issues including inconsistent results, disruption to mitochondrial ultrastructure, and a lack of optimisation for volume EM methods. We have used short fixation and microwave processing to address these issues. We show that our method gives consistent cytochrome c oxidase labelling and improves labelling penetration across tissue volume. We also quantify mitochondrial morphology metrics, including in volume EM, to show that ultrastructure is unaltered by the processing. This work represents a technical advance that allows the correlation of mitochondrial function and morphology with greater resolution and volume than has previously been feasible. LAY SUMMARY: Transmission electron microscopy (TEM) is a high-resolution technique used for the study of cells and their components, such as mitochondria. However, the two-dimensional nature of TEM means that quantification of these structures is difficult without making assumptions about their shape; a problem that was solved by the advent of three-dimensional EM approaches. Mitochondrial shape and function are known to be linked therefore there is a need to combine three-dimensional EM structural analysis with functional analysis. To do this we used electron microscopy to visualise a reaction that assesses the activity of cytochrome c oxidase in the mitochondrial respiratory chain. The reaction deposits a dark staining on mitochondrial cristae where cytochrome c oxidase is functioning and a lack of staining where it is not. We first optimised this technique for TEM, showing that the tissue was evenly stained and exhibited no effect on mitochondrial shape when compared to conventionally processed tissue. We then demonstrated that this was also true of a sample processed for three-dimensional EM imaging. This work presents an advance in three-dimensional EM imaging that allows us to look at both mitochondrial function and shape and to detect subtle changes in shape.


Assuntos
Microscopia Eletrônica de Transmissão/métodos , Mitocôndrias/fisiologia , Mitocôndrias/ultraestrutura , Coloração e Rotulagem/métodos , Fixação de Tecidos/métodos , Animais , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Imageamento Tridimensional/métodos , Camundongos
3.
Methods Cell Biol ; 155: 121-156, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32183956

RESUMO

Measurement of the individual enzymes involved in mitochondrial oxidative phosphorylation (OXPHOS) forms a key part of diagnostic investigations in patients with suspected mitochondrial disease, and can provide crucial information on mitochondrial OXPHOS function in a variety of cells and tissues that are applicable to many research investigations. In this chapter, we present methods for analysis of mitochondrial respiratory chain enzymes in cells and tissues based on assays performed in two geographically separate diagnostic referral centers, as part of clinical diagnostic investigations. Techniques for sample preparation from cells and tissues, and spectrophotometric assays for measurement of the activities of OXPHOS complexes I-V, the combined activity of complexes II+III, and the mitochondrial matrix enzyme citrate synthase, are provided. The activities of mitochondrial respiratory chain enzymes are often expressed relative to citrate synthase activity, since these ratios may be more robust in accounting for variability that may arise due to tissue quality, handling and storage, cell growth conditions, or any mitochondrial proliferation that may be present in tissues from patients with mitochondrial disease. Considerations for adaption of these techniques to other cells, tissues, and organisms are presented, as well as comparisons to alternate methods for analysis of respiratory chain function. In this context, a quantitative immunofluorescence protocol is also provided that is suitable for measurement of the amount of multiple respiratory chain complexes in small diagnostic tissue samples. The analysis and interpretation of OXPHOS enzyme activities are then placed in the context of mitochondrial disease tissue pathology and diagnosis.


Assuntos
Ensaios Enzimáticos/métodos , Enzimas/metabolismo , Mitocôndrias/metabolismo , Especificidade de Órgãos , Animais , Transporte de Elétrons , Humanos , Fosforilação Oxidativa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA