Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Occup Environ Med ; 80(12): 694-701, 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-37984917

RESUMO

OBJECTIVES: This study aims to present an overview of the formal recognition of COVID-19 as occupational disease (OD) or injury (OI) across Europe. METHODS: A COVID-19 questionnaire was designed by a task group within COST-funded OMEGA-NET and sent to occupational health experts of 37 countries in WHO European region, with a last update in April 2022. RESULTS: The questionnaire was filled out by experts from 35 countries. There are large differences between national systems regarding the recognition of OD and OI: 40% of countries have a list system, 57% a mixed system and one country an open system. In most countries, COVID-19 can be recognised as an OD (57%). In four countries, COVID-19 can be recognised as OI (11%) and in seven countries as either OD or OI (20%). In two countries, there is no recognition possible to date. Thirty-two countries (91%) recognise COVID-19 as OD/OI among healthcare workers. Working in certain jobs is considered proof of occupational exposure in 25 countries, contact with a colleague with confirmed infection in 19 countries, and contact with clients with confirmed infection in 21 countries. In most countries (57%), a positive PCR test is considered proof of disease. The three most common compensation benefits for COVID-19 as OI/OD are disability pension, treatment and rehabilitation. Long COVID is included in 26 countries. CONCLUSIONS: COVID-19 can be recognised as OD or OI in 94% of the European countries completing this survey, across different social security and embedded occupational health systems.


Assuntos
COVID-19 , Doenças Profissionais , Exposição Ocupacional , Humanos , COVID-19/epidemiologia , Síndrome de COVID-19 Pós-Aguda , Europa (Continente)/epidemiologia , Doenças Profissionais/epidemiologia , Doenças Profissionais/terapia , Ocupações , Exposição Ocupacional/efeitos adversos
2.
Environ Int ; 181: 108226, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37945424

RESUMO

BACKGROUND: A World Health Organization (WHO) and International Labour Organization (ILO) systematic review reported sufficient evidence for higher risk of non-melanoma skin cancer (NMSC) amongst people occupationally exposed to solar ultraviolet radiation (UVR). This article presents WHO/ILO Joint Estimates of global, regional, national and subnational occupational exposures to UVR for 195 countries/areas and the global, regional and national attributable burdens of NMSC for 183 countries, by sex and age group, for the years 2000, 2010 and 2019. METHODS: We calculated population-attributable fractions (PAFs) from estimates of the population occupationally exposed to UVR and the risk ratio for NMSC from the WHO/ILO systematic review. Occupational exposure to UVR was modelled via proxy of occupation with outdoor work, using 166 million observations from 763 cross-sectional surveys for 96 countries/areas. Attributable NMSC burden was estimated by applying the PAFs to WHO's estimates of the total NMSC burden. Measures of inequality were calculated. RESULTS: Globally in 2019, 1.6 billion workers (95 % uncertainty range [UR] 1.6-1.6) were occupationally exposed to UVR, or 28.4 % (UR 27.9-28.8) of the working-age population. The PAFs were 29.0 % (UR 24.7-35.0) for NMSC deaths and 30.4 % (UR 29.0-31.7) for disability-adjusted life years (DALYs). Attributable NMSC burdens were 18,960 deaths (UR 18,180-19,740) and 0.5 million DALYs (UR 0.4-0.5). Men and older age groups carried larger burden. Over 2000-2019, attributable deaths and DALYs almost doubled. CONCLUSIONS: WHO and the ILO estimate that occupational exposure to UVR is common and causes substantial, inequitable and growing attributable burden of NMSC. Governments must protect outdoor workers from hazardous exposure to UVR and attributable NMSC burden and inequalities.


Assuntos
Doenças Profissionais , Exposição Ocupacional , Neoplasias Cutâneas , Masculino , Humanos , Idoso , Raios Ultravioleta/efeitos adversos , Estudos Transversais , Exposição Ocupacional/análise , Neoplasias Cutâneas/epidemiologia , Neoplasias Cutâneas/etiologia , Organização Mundial da Saúde , Efeitos Psicossociais da Doença , Doenças Profissionais/epidemiologia
3.
Ann Work Expo Health ; 66(5): 671-686, 2022 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-34935027

RESUMO

OBJECTIVES: The Network on the Coordination and Harmonisation of European Occupational Cohorts (OMEGA-NET) was set up to enable optimization of the use of industrial and general population cohorts across Europe to advance aetiological research. High-quality harmonized exposure assessment is crucial to derive comparable results and to enable pooled analyses. To facilitate a harmonized research strategy, a concerted effort is needed to catalogue available occupational exposure information. We here aim to provide a first comprehensive overview of exposure assessment tools that could be used for occupational epidemiological studies. METHODS: An online inventory was set up to collect meta-data on exposure assessment tools. Occupational health researchers were invited via newsletters, editorials, and individual e-mails to provide details of job-exposure matrices (JEMs), exposure databases, and occupational coding systems and their associated crosswalks to translate codes between different systems, with a focus on Europe. RESULTS: Meta-data on 36 general population JEMs, 11 exposure databases, and 29 occupational coding systems from more than 10 countries have been collected up to August 2021. A wide variety of exposures were covered in the JEMs on which data were entered, with dusts and fibres (in 14 JEMs) being the most common types. Fewer JEMs covered organization of work (5) and biological factors (4). Dusts and fibres were also the most common exposures included in the databases (7 out of 11), followed by solvents and pesticides (both in 6 databases). CONCLUSIONS: This inventory forms the basis for a searchable web-based database of meta-data on existing occupational exposure information, to support researchers in finding the available tools for assessing occupational exposures in their cohorts, and future efforts for harmonization of exposure assessment. This inventory remains open for further additions, to enlarge its coverage and include newly developed tools.


Assuntos
Exposição Ocupacional , Saúde Ocupacional , Poeira , Europa (Continente) , Humanos , Ocupações
4.
Ann Work Expo Health ; 63(9): 1013-1028, 2019 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-31702767

RESUMO

OBJECTIVES: The aim of this work was to build a job-exposure matrix (JEM) using an international coding system and covering the non-thermal intermediate frequency (IF) (3-100 kHz, named IFELF), thermal IF (100 kHz-10 MHz, named IFRF), and radiofrequency (RF) (>10 MHz) bands. METHODS: Detailed occupational data were collected in a large population-based case-control study, INTEROCC, with occupations coded into the International Standard Classification of Occupations system 1988 (ISCO88). The subjects' occupational source-based ancillary information was combined with an existing source-exposure matrix and the reference levels of the International Commission on Non-Ionizing Radiation Protection (ICNIRP) for occupational exposure to calculate estimates of level (L) of exposure to electric (E) and magnetic (H) fields by ISCO88 code and frequency band as ICNIRP ratios (IFELF) or squared ratios (IFRF and RF). Estimates of exposure probability (P) were obtained by dividing the number of exposed subjects by the total number of subjects available per job title. RESULTS: With 36 011 job histories collected, 468 ISCO88 (four-digit) codes were included in the JEM, of which 62.4% are exposed to RF, IFRF, and/or IFELF. As a reference, P values for RF E-fields ranged from 0.3 to 65.0% with a median of 5.1%. L values for RF E-fields (ICNIRP squared ratio) ranged from 6.94 × 10-11 to 33.97 with a median of 0.61. CONCLUSIONS: The methodology used allowed the development of a JEM for high-frequency electromagnetic fields containing exposure estimates for the largest number of occupations to date. Although the validity of this JEM is limited by the small number of available observations for some codes, this JEM may be useful for epidemiological studies and occupational health management programs assessing high-frequency electromagnetic field exposure in occupational settings.


Assuntos
Campos Eletromagnéticos/efeitos adversos , Exposição Ocupacional/estatística & dados numéricos , Ocupações/classificação , Adulto , Estudos de Casos e Controles , Humanos , Exposição Ocupacional/análise , Ondas de Rádio , Medição de Risco/métodos
7.
Proc Natl Acad Sci U S A ; 115(38): 9592-9597, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30181279

RESUMO

Exposure to ambient fine particulate matter (PM2.5) is a major global health concern. Quantitative estimates of attributable mortality are based on disease-specific hazard ratio models that incorporate risk information from multiple PM2.5 sources (outdoor and indoor air pollution from use of solid fuels and secondhand and active smoking), requiring assumptions about equivalent exposure and toxicity. We relax these contentious assumptions by constructing a PM2.5-mortality hazard ratio function based only on cohort studies of outdoor air pollution that covers the global exposure range. We modeled the shape of the association between PM2.5 and nonaccidental mortality using data from 41 cohorts from 16 countries-the Global Exposure Mortality Model (GEMM). We then constructed GEMMs for five specific causes of death examined by the global burden of disease (GBD). The GEMM predicts 8.9 million [95% confidence interval (CI): 7.5-10.3] deaths in 2015, a figure 30% larger than that predicted by the sum of deaths among the five specific causes (6.9; 95% CI: 4.9-8.5) and 120% larger than the risk function used in the GBD (4.0; 95% CI: 3.3-4.8). Differences between the GEMM and GBD risk functions are larger for a 20% reduction in concentrations, with the GEMM predicting 220% higher excess deaths. These results suggest that PM2.5 exposure may be related to additional causes of death than the five considered by the GBD and that incorporation of risk information from other, nonoutdoor, particle sources leads to underestimation of disease burden, especially at higher concentrations.


Assuntos
Poluentes Atmosféricos/toxicidade , Exposição Ambiental/efeitos adversos , Carga Global da Doença/estatística & dados numéricos , Doenças não Transmissíveis/mortalidade , Material Particulado/toxicidade , Poluição do Ar/efeitos adversos , Teorema de Bayes , Estudos de Coortes , Saúde Global/estatística & dados numéricos , Humanos , Modelos de Riscos Proporcionais , Medição de Risco , Fatores de Tempo
8.
Environ Int ; 119: 353-365, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29996112

RESUMO

INTRODUCTION: In 2011, the International Agency for Research on Cancer classified radiofrequency (RF) electromagnetic fields (EMF) as possibly carcinogenic to humans (group 2B), although the epidemiological evidence for the association between occupational exposure to RF-EMF and cancer was judged to be inadequate, due in part to limitations in exposure assessment. This study examines the relation between occupational RF and intermediate frequency (IF) EMF exposure and brain tumor (glioma and meningioma) risk in the INTEROCC multinational population-based case-control study (with nearly 4000 cases and over 5000 controls), using a novel exposure assessment approach. METHODS: Individual indices of cumulative exposure to RF and IF-EMF (overall and in specific exposure time windows) were assigned to study participants using a source-exposure matrix and detailed interview data on work with or nearby EMF sources. Conditional logistic regression was used to investigate associations with glioma and meningioma risk. RESULTS: Overall, around 10% of study participants were exposed to RF while only 1% were exposed to IF-EMF. There was no clear evidence for a positive association between RF or IF-EMF and the brain tumors studied, with most results showing either no association or odds ratios (ORs) below 1.0. The largest adjusted ORs were obtained for cumulative exposure to RF magnetic fields (as A/m-years) in the highest exposed category (≥90th percentile) for the most recent exposure time window (1-4 years before the diagnosis or reference date) for both glioma, OR = 1.62 (95% confidence interval (CI): 0.86, 3.01) and meningioma (OR = 1.52, 95% CI: 0.65, 3.55). CONCLUSION: Despite the improved exposure assessment approach used in this study, no clear associations were identified. However, the results obtained for recent exposure to RF electric and magnetic fields are suggestive of a potential role in brain tumor promotion/progression and should be further investigated.


Assuntos
Neoplasias Encefálicas/epidemiologia , Campos Eletromagnéticos/efeitos adversos , Exposição Ocupacional/estatística & dados numéricos , Estudos de Casos e Controles , Humanos , Razão de Chances
9.
Air Qual Atmos Health ; 9(8): 961-972, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27867428

RESUMO

The effectiveness of regulatory actions designed to improve air quality is often assessed by predicting changes in public health resulting from their implementation. Risk of premature mortality from long-term exposure to ambient air pollution is the single most important contributor to such assessments and is estimated from observational studies generally assuming a log-linear, no-threshold association between ambient concentrations and death. There has been only limited assessment of this assumption in part because of a lack of methods to estimate the shape of the exposure-response function in very large study populations. In this paper, we propose a new class of variable coefficient risk functions capable of capturing a variety of potentially non-linear associations which are suitable for health impact assessment. We construct the class by defining transformations of concentration as the product of either a linear or log-linear function of concentration multiplied by a logistic weighting function. These risk functions can be estimated using hazard regression survival models with currently available computer software and can accommodate large population-based cohorts which are increasingly being used for this purpose. We illustrate our modeling approach with two large cohort studies of long-term concentrations of ambient air pollution and mortality: the American Cancer Society Cancer Prevention Study II (CPS II) cohort and the Canadian Census Health and Environment Cohort (CanCHEC). We then estimate the number of deaths attributable to changes in fine particulate matter concentrations over the 2000 to 2010 time period in both Canada and the USA using both linear and non-linear hazard function models.

10.
Environ Health Perspect ; 122(4): 397-403, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24518036

RESUMO

BACKGROUND: Estimating the burden of disease attributable to long-term exposure to fine particulate matter (PM2.5) in ambient air requires knowledge of both the shape and magnitude of the relative risk (RR) function. However, adequate direct evidence to identify the shape of the mortality RR functions at the high ambient concentrations observed in many places in the world is lacking. OBJECTIVE: We developed RR functions over the entire global exposure range for causes of mortality in adults: ischemic heart disease (IHD), cerebrovascular disease (stroke), chronic obstructive pulmonary disease (COPD), and lung cancer (LC). We also developed RR functions for the incidence of acute lower respiratory infection (ALRI) that can be used to estimate mortality and lost-years of healthy life in children < 5 years of age. METHODS: We fit an integrated exposure-response (IER) model by integrating available RR information from studies of ambient air pollution (AAP), second hand tobacco smoke, household solid cooking fuel, and active smoking (AS). AS exposures were converted to estimated annual PM2.5 exposure equivalents using inhaled doses of particle mass. We derived population attributable fractions (PAFs) for every country based on estimated worldwide ambient PM2.5 concentrations. RESULTS: The IER model was a superior predictor of RR compared with seven other forms previously used in burden assessments. The percent PAF attributable to AAP exposure varied among countries from 2 to 41 for IHD, 1 to 43 for stroke, < 1 to 21 for COPD, < 1 to 25 for LC, and < 1 to 38 for ALRI. CONCLUSIONS: We developed a fine particulate mass-based RR model that covered the global range of exposure by integrating RR information from different combustion types that generate emissions of particulate matter. The model can be updated as new RR information becomes available.


Assuntos
Material Particulado/toxicidade , Efeitos Psicossociais da Doença , Exposição Ambiental , Feminino , Humanos , Masculino , Modelos Teóricos
11.
Int J Environ Health Res ; 19(2): 81-96, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19370460

RESUMO

Expert opinion from Canada, the United States and European Union countries was solicited to examine the regulatory and non-regulatory approaches used to protect children's environmental health. Thirty-five experts were interviewed by telephone from June 2004 to March 2005 using an open-ended survey questionnaire. Experts were asked to name legislative and non-legislative tools used to protect children's environmental health in their jurisdiction as well as the effectiveness of approaches taken, barriers, facilitators, methods of evaluation, and recommendations for improving children's health protection. A number of common themes were revealed by experts in different countries as well as novel approaches that could be used to improve children's environmental health. Determining what types of governance and non-governance instruments are most effective based on experience from other jurisdictions, allows for the determination of common, effective, policy choice from shared children's health environmental risks. It also provides a broad classification of different approaches that have been used for children's environmental health. Three main areas suggested for strengthening children's environmental health protection included: research and surveillance, institutional organization, and regulatory capacity.


Assuntos
Proteção da Criança , Saúde Ambiental , Política Pública , Canadá , Criança , Coleta de Dados , Poluentes Ambientais/toxicidade , Europa (Continente) , Humanos , Formulação de Políticas , Medição de Risco , Estados Unidos
12.
J Health Psychol ; 13(8): 1082-91, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18987081

RESUMO

Differentials in health status and behaviour by socioeconomic status (SES) constitute a scientific and policy challenge. In this article, data from a national survey on Canadians' perceptions of population health risks were analysed to determine whether various types of health risk perceptions mediated SES differentials in health behaviour. As expected, health behaviours and risk perceptions both varied with SES. Results suggested a mediating role of health risk perceptions-particularly those of a social nature-in the association between SES and smoking. Findings underscore the importance of improving the social environment to fostering better lifestyle and health among disadvantaged individuals.


Assuntos
Comportamentos Relacionados com a Saúde , Classe Social , Adulto , Exercício Físico/psicologia , Feminino , Nível de Saúde , Humanos , Estilo de Vida , Modelos Lineares , Masculino , Pessoa de Meia-Idade , Modelos Estatísticos , Percepção , Risco , Fumar/psicologia , Meio Social , Fatores Socioeconômicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA