Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2645: 241-249, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37202624

RESUMO

To date, there is a large bottleneck associated with cancer drug design and development: a lack of appropriate methodologies for screening their potential toxicity. This issue not only causes a high attrition rate for these compounds but also slows down the drug discovery process in general. To overcome this problem, robust, accurate, and reproducible methodologies for assessing anti-cancer compounds are essential. Multiparametric technique and high-throughput analysis, in particular, are favored due to the time- and cost-effective way in which they assess large panels of materials, and due to their large informational output. Following extensive work within our group, we have developed a protocol for assessing the toxicity of anti-cancer compounds using a high-content screening and analysis (HCSA) platform, which is both time-effective and reproducible.


Assuntos
Ensaios de Triagem em Larga Escala , Neoplasias , Humanos , Ensaios de Triagem em Larga Escala/métodos , Descoberta de Drogas/métodos , Neoplasias/tratamento farmacológico , Desenho de Fármacos
2.
Drug Deliv Transl Res ; 12(9): 2157-2177, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35763196

RESUMO

Nanobiomaterials, or NBMs, have been used in medicine and bioimaging for decades, with wide-reaching applications ranging from their uses as carriers of genes and drugs, to acting as sensors and probes. When developing nanomedicine products, it is vitally important to evaluate their safety, ensuring that both biocompatibility and efficacy are achieved so their applications in these areas can be safe and effective. When discussing the safety of nanomedicine in general terms, it is foolish to make generalised statements due to the vast array of different manufactured nanomaterials, formulated from a multitude of different materials, in many shapes and sizes; therefore, NBM pre-clinical screening can be a significant challenge. Outside of their distribution in the various tissues, organs and cells in the body, a key area of interest is the impact of NBMs on the liver. A considerable issue for researchers today is accurately predicting human-specific liver toxicity prior to clinical trials, with hepatotoxicity not only the most cited reasons for withdrawal of approved drugs, but also a primary cause of attrition in pre-launched drug candidates. To date, no simple solution to adequately predict these adverse effects exists prior to entering human experimentation. The limitations of the current pre-clinical toolkit are believed to be one of the main reasons for this, with questions being raised on the relevance of animal models in pre-clinical assessment, and over the ability of conventional, simplified in vitro cell-based assays to adequately assess new drug candidates or NBMs. Common 2D cell cultures are unable to adequately represent the functions of 3D tissues and their complex cell-cell and cell-matrix interactions, as well as differences found in diffusion and transport conditions. Therefore, testing NBM toxicity in conventional 2D models may not be an accurate reflection of the actual toxicity these materials impart on the body. One such method of overcoming these issues is the use of 3D cultures, such as cell spheroids, to more accurately assess NBM-tissue interaction. In this study, we introduce a 3D hepatocellular carcinoma model cultured from HepG2 cells to assess both the cytotoxicity and viability observed following treatment with a variety of NBMs, namely a nanostructured lipid carrier (in the specific technical name = LipImage™ 815), a gold nanoparticle (AuNP) and a panel of polymeric (in the specific technical name = PACA) NBMs. This model is also in compliance with the 3Rs policy of reduction, refinement and replacement in animal experimentation [1], and meets the critical need for more advanced in vitro models for pre-clinical nanotoxicity assessment. Pipeline for the pre-clinical assessment of NBMs in liver spheroid model.


Assuntos
Ouro , Nanopartículas Metálicas , Animais , Técnicas de Cultura de Células/métodos , Ouro/farmacologia , Humanos , Fígado , Esferoides Celulares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA