Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Sci Total Environ ; 912: 169079, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38049000

RESUMO

Globally, riverine system biodiversity is threatened by a range of stressors, spanning pollution, sedimentation, alterations to water flow, and climate change. Pesticides have been associated with population level impacts on freshwater invertebrates for acute high-level exposures, but far less is known about the chronic impact of episodic exposure to specific classes of pesticides or their mixtures. Here we employed the use of the UK Environment Agency's monitoring datasets over 40 years (covering years 1980 to 2019) to assess the impacts of AChE (acetylcholinesterase) and GABA (gamma-aminobutyric acid) receptor targeting pesticides on invertebrate family richness at English river sites. Concentrations of AChE and GABA pesticides toxic to freshwater invertebrates occurred (measured) across 18 of the 66 river sites assessed. For one of the three river sites (all found in the Midlands region of England) where data recorded over the past 40 years were sufficient for robust modelling studies, both AChE and GABA pesticides associated with invertebrate family richness. Here, where AChE total pesticide concentrations were classified as high, 46 of 64 invertebrate families were absent, and where GABA total pesticide concentration were classified as high, 16 of 64 invertebrate families were absent. Using a combination of field evidence and laboratory toxicity thresholds for population relevant endpoints we identify families of invertebrates most at risk in the selected English rivers to AChE and GABA pesticides. We, furthermore, provide strong evidence that the absence of the invertebrate family Polycentropodidae (caddisfly) from one field site is due to exposure effects to AChE pesticides.


Assuntos
Praguicidas , Poluentes Químicos da Água , Animais , Praguicidas/toxicidade , Praguicidas/análise , Acetilcolinesterase , Insetos , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Invertebrados , Água Doce , Monitoramento Ambiental , Ácido gama-Aminobutírico , Ecossistema
2.
Sci Total Environ ; 695: 133804, 2019 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-31419690

RESUMO

Once released into the environment antibiotics can kill or inhibit the growth of bacteria, and in turn potentially have effects on bacterial community structure and ecosystem function. Environmental risk assessment (ERA) seeks to establish protection limits to minimise chemical impacts on the environment, but recent evidence suggests that the current regulatory approaches for ERA for antibiotics may not be adequate for protecting bacteria that have fundamental roles in ecosystem function. In this study we assess the differences in interspecies sensitivity of eight species of cyanobacteria to seven antibiotics (cefazolin, cefotaxime, ampicillin, sufamethazine, sulfadiazine, azithromycin and erythromycin) with three different modes of action. We found that variability in the sensitivity to these antibiotics between species was dependent on the mode of action and varied by up to 70 times for ß-lactams. Probabilistic analysis using species sensitivity distributions suggest that the current predicted no effect concentration PNEC for the antibiotics may be either over or under protective of cyanobacteria dependent on the species on which it is based and the mode of action of the antibiotic; the PNECs derived for the macrolide antibiotics were over protective but PNECs for ß-lactams were generally under protective. For some geographical locations we identify a significant risk to cyanobacteria populations based upon measured environmental concentrations of selected antibiotics. We conclude that protection limits, as determined according to current regulatory guidance, may not always be protective and might be better derived using SSDs and that including toxicity data for a wider range of (cyano-) bacteria would improve confidence for the ERA of antibiotics.


Assuntos
Antibacterianos/toxicidade , Cianobactérias/fisiologia , Poluentes Químicos da Água/toxicidade , Antibacterianos/análise , Cianobactérias/efeitos dos fármacos , Monitoramento Ambiental , Medição de Risco , Poluentes Químicos da Água/análise
4.
Crit Rev Toxicol ; 48(2): 109-120, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28929839

RESUMO

Endocrine active chemicals (EACs) are widespread in freshwater environments and both laboratory and field based studies have shown reproductive effects in fish at environmentally relevant exposures. Environmental risk assessment (ERA) seeks to protect wildlife populations and prospective assessments rely on extrapolation from individual-level effects established for laboratory fish species to populations of wild fish using arbitrary safety factors. Population susceptibility to chemical effects, however, depends on exposure risk, physiological susceptibility, and population resilience, each of which can differ widely between fish species. Population models have significant potential to address these shortfalls and to include individual variability relating to life-history traits, demographic and density-dependent vital rates, and behaviors which arise from inter-organism and organism-environment interactions. Confidence in population models has recently resulted in the EU Commission stating that results derived from reliable models may be considered when assessing the relevance of adverse effects of EACs at the population level. This review critically assesses the potential risks posed by EACs for fish populations, considers the ecological factors influencing these risks and explores the benefits and challenges of applying population modeling (including individual-based modeling) in ERA for EACs in fish. We conclude that population modeling offers a way forward for incorporating greater environmental relevance in assessing the risks of EACs for fishes and for identifying key risk factors through sensitivity analysis. Individual-based models (IBMs) allow for the incorporation of physiological and behavioral endpoints relevant to EAC exposure effects, thus capturing both direct and indirect population-level effects.


Assuntos
Ecotoxicologia/métodos , Disruptores Endócrinos/toxicidade , Peixes , Medição de Risco/métodos , Animais , Peixes/fisiologia , Modelos Biológicos , Poluentes Químicos da Água/toxicidade
5.
Environ Int ; 109: 155-169, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28964562

RESUMO

Antibiotics are vital in the treatment of bacterial infectious diseases but when released into the environment they may impact non-target organisms that perform vital ecosystem services and enhance antimicrobial resistance development with significant consequences for human health. We evaluate whether the current environmental risk assessment regulatory guidance is protective of antibiotic impacts on the environment, protective of antimicrobial resistance, and propose science-based protection goals for antibiotic manufacturing discharges. A review and meta-analysis was conducted of aquatic ecotoxicity data for antibiotics and for minimum selective concentration data derived from clinically relevant bacteria. Relative species sensitivity was investigated applying general linear models, and predicted no effect concentrations were generated for toxicity to aquatic organisms and compared with predicted no effect concentrations for resistance development. Prokaryotes were most sensitive to antibiotics but the range of sensitivities spanned up to several orders of magnitude. We show reliance on one species of (cyano)bacteria and the 'activated sludge respiration inhibition test' is not sufficient to set protection levels for the environment. Individually, neither traditional aquatic predicted no effect concentrations nor predicted no effect concentrations suggested to safeguard for antimicrobial resistance, protect against environmental or human health effects (via antimicrobial resistance development). Including data from clinically relevant bacteria and also more species of environmentally relevant bacteria in the regulatory framework would help in defining safe discharge concentrations for antibiotics for patient use and manufacturing that would protect environmental and human health. It would also support ending unnecessary testing on metazoan species.


Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Farmacorresistência Bacteriana , Saúde Ambiental , Ecossistema , Humanos , Medição de Risco
6.
Regul Toxicol Pharmacol ; 75: 20-6, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26724733

RESUMO

There is currently limited guidance available for regulators and risk assessors on how to use data from non-guideline methods when assessing the bioaccumulation potential of a chemical. Furthermore, bioaccumulation assessments can be more subjective than they need to be due to the lack of a guidance framework on how to use/include the range of information that may be available for a substance. Under some circumstances, in silico, in vitro and/or in vivo non-test guideline data may be sufficient to classify whether a substance is bioaccumulative without the need for further animal testing. Classifying the bioaccumulative potential of a substance is especially difficult when the bioconcentration factor (BCF) is close to the threshold for defining it as bioaccumulative/very bioaccumulative (B/vB), and a more structured process is required to reduce uncertainty in the BCF estimates. In these situations, in silico and in vitro data can, and should, be used to provide greater confidence in classifying these substances. To aid future evaluations of bioaccumulation data, a proposed tiered assessment strategy is presented incorporating all available data on the bioaccumulative properties of a substance. In addition, a revised scheme is recommended for improving the classification of the bioaccumulative potential of a substance.


Assuntos
Peixes/metabolismo , Medição de Risco/métodos , Poluentes Químicos da Água/metabolismo , Animais , Incerteza
7.
Environ Health ; 12: 69, 2013 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-23981490

RESUMO

The "common sense" intervention by toxicology journal editors regarding proposed European Union endocrine disrupter regulations ignores scientific evidence and well-established principles of chemical risk assessment. In this commentary, endocrine disrupter experts express their concerns about a recently published, and is in our considered opinion inaccurate and factually incorrect, editorial that has appeared in several journals in toxicology. Some of the shortcomings of the editorial are discussed in detail. We call for a better founded scientific debate which may help to overcome a polarisation of views detrimental to reaching a consensus about scientific foundations for endocrine disrupter regulation in the EU.


Assuntos
Disruptores Endócrinos/toxicidade , Exposição Ambiental , Poluentes Ambientais/toxicidade , Publicações Periódicas como Assunto , Toxicologia/normas , União Europeia , Regulamentação Governamental , Política de Saúde , Humanos
8.
Environ Health Perspect ; 118(1): 1-5, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20056575

RESUMO

BACKGROUND: In this commentary we present the findings from an international consortium on fish toxicogenomics sponsored by the U.K. Natural Environment Research Council (Fish Toxicogenomics-Moving into Regulation and Monitoring, held 21-23 April 2008 at the Pacific Environmental Science Centre, Vancouver, BC, Canada). OBJECTIVES: The consortium from government agencies, academia, and industry addressed three topics: progress in ecotoxicogenomics, regulatory perspectives on roadblocks for practical implementation of toxicogenomics into risk assessment, and dealing with variability in data sets. DISCUSSION: Participants noted that examples of successful application of omic technologies have been identified, but critical studies are needed to relate molecular changes to ecological adverse outcome. Participants made recommendations for the management of technical and biological variation. They also stressed the need for enhanced interdisciplinary training and communication as well as considerable investment into the generation and curation of appropriate reference omic data. CONCLUSIONS: The participants concluded that, although there are hurdles to pass on the road to regulatory acceptance, omics technologies are already useful for elucidating modes of action of toxicants and can contribute to the risk assessment process as part of a weight-of-evidence approach.


Assuntos
Ecotoxicologia , Monitoramento Ambiental , Animais , Ecotoxicologia/legislação & jurisprudência , Ecotoxicologia/tendências , Monitoramento Ambiental/legislação & jurisprudência , Peixes/genética , Agências Internacionais , Medição de Risco , Toxicogenética/legislação & jurisprudência
9.
Environ Health Perspect ; 114 Suppl 1: 90-7, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16818252

RESUMO

The effects of simple mixtures of chemicals, with similar mechanisms of action, can be predicted using the concentration addition model (CA). The ability of this model to predict the estrogenic effects of more complex mixtures such as effluent discharges, however, has yet to be established. Effluents from 43 U.K. wastewater treatment works were analyzed for the presence of the principal estrogenic chemical contaminants, estradiol, estrone, ethinylestradiol, and nonylphenol. The measured concentrations were used to predict the estrogenic activity of each effluent, employing the model of CA, based on the relative potencies of the individual chemicals in an in vitro recombinant yeast estrogen screen (rYES) and a short-term (14-day) in vivo rainbow trout vitellogenin induction assay. Based on the measured concentrations of the four chemicals in the effluents and their relative potencies in each assay, the calculated in vitro and in vivo responses compared well and ranged between 3.5 and 87 ng/L of estradiol equivalents (E2 EQ) for the different effluents. In the rYES, however, the measured E2 EQ concentrations in the effluents ranged between 0.65 and 43 ng E2 EQ/L, and they varied against those predicted by the CA model. Deviations in the estimation of the estrogenic potency of the effluents by the CA model, compared with the measured responses in the rYES, are likely to have resulted from inaccuracies associated with the measurement of the chemicals in the extracts derived from the complex effluents. Such deviations could also result as a consequence of interactions between chemicals present in the extracts that disrupted the activation of the estrogen response elements in the rYES. E2 EQ concentrations derived from the vitellogenic response in fathead minnows exposed to a series of effluent dilutions were highly comparable with the E2 EQ concentrations derived from assessments of the estrogenic potency of these dilutions in the rYES. Together these data support the use of bioassays for determining the estrogenic potency of WwTW effluents, and they highlight the associated problems for modeling approaches that are reliant on measured concentrations of estrogenic chemicals.


Assuntos
Estrogênios/toxicidade , Previsões/métodos , Resíduos Industriais/efeitos adversos , Modelos Teóricos , Concentração Osmolar , Poluentes Químicos da Água/toxicidade , Relação Dose-Resposta a Droga , Estradiol/farmacocinética
10.
Environ Health Perspect ; 114 Suppl 1: 106-14, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16818255

RESUMO

Biomarkers are currently best used as mechanistic "signposts" rather than as "traffic lights" in the environmental risk assessment of endocrine-disrupting chemicals (EDCs). In field studies, biomarkers of exposure [e.g., vitellogenin (VTG) induction in male fish] are powerful tools for tracking single substances and mixtures of concern. Biomarkers also provide linkage between field and laboratory data, thereby playing an important role in directing the need for and design of fish chronic tests for EDCs. It is the adverse effect end points (e.g., altered development, growth, and/or reproduction) from such tests that are most valuable for calculating adverseNOEC (no observed effect concentration) or adverseEC10 (effective concentration for a 10% response) and subsequently deriving predicted no effect concentrations (PNECs). With current uncertainties, biomarkerNOEC or biomarkerEC10 data should not be used in isolation to derive PNECs. In the future, however, there may be scope to increasingly use biomarker data in environmental decision making, if plausible linkages can be made across levels of organization such that adverse outcomes might be envisaged relative to biomarker responses. For biomarkers to fulfil their potential, they should be mechanistically relevant and reproducible (as measured by interlaboratory comparisons of the same protocol). VTG is a good example of such a biomarker in that it provides an insight to the mode of action (estrogenicity) that is vital to fish reproductive health. Interlaboratory reproducibility data for VTG are also encouraging; recent comparisons (using the same immunoassay protocol) have provided coefficients of variation (CVs) of 38-55% (comparable to published CVs of 19-58% for fish survival and growth end points used in regulatory test guidelines). While concern over environmental xenoestrogens has led to the evaluation of reproductive biomarkers in fish, it must be remembered that many substances act via diverse mechanisms of action such that the environmental risk assessment for EDCs is a broad and complex issue. Also, biomarkers such as secondary sexual characteristics, gonadosomatic indices, plasma steroids, and gonadal histology have significant potential for guiding interspecies assessments of EDCs and designing fish chronic tests. To strengthen the utility of EDC biomarkers in fish, we need to establish a historical control database (also considering natural variability) to help differentiate between statistically detectable versus biologically significant responses. In conclusion, as research continues to develop a range of useful EDC biomarkers, environmental decision-making needs to move forward, and it is proposed that the "biomarkers as signposts" approach is a pragmatic way forward in the current risk assessment of EDCs.


Assuntos
Biomarcadores/análise , Disruptores Endócrinos/toxicidade , Peixes/fisiologia , Projetos de Pesquisa , Medição de Risco/métodos , Algoritmos , Animais , Exposição Ambiental , Projetos de Pesquisa/normas , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA