Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Microbiol ; 25(12): 3035-3051, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37655671

RESUMO

Plasmids are important vehicles for the dissemination of antibiotic resistance genes (ARGs) among bacteria by conjugation. Here, we determined the complete nucleotide sequences of nine different plasmids previously obtained by exogenous plasmid isolation from river and creek sediments and wastewater from a pharmaceutical company. We identified six IncP/P-1ε plasmids and single members of IncL, IncN and IncFII-like plasmids. Genetic structures of the accessory regions of the IncP/P-1ε plasmids obtained implied that multiple insertions and deletions had occurred, mediated by different transposons and Class 1 integrons with various ARGs. Our study provides compelling evidence that Class 1 integrons, Tn402-like transposons, Tn3-like transposons and/or IS26 played important roles in the acquisition of ARGs across all investigated plasmids. Our plasmid sequencing data provide new insights into how these mobile genetic elements could mediate the acquisition and spread of ARGs in environmental bacteria.


Assuntos
Poluentes Ambientais , Integrons , Antibacterianos/farmacologia , Bactérias/genética , Elementos de DNA Transponíveis/genética , Resistência a Múltiplos Medicamentos , Integrons/genética , Plasmídeos/genética , Indústria Farmacêutica
2.
Environ Int ; 130: 104735, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31260930

RESUMO

High antibiotic releases from manufacturing facilities have been identified as a risk factor for antibiotic resistance development in bacterial pathogens. However, the role of antibiotic pollution in selection and transferability of antibiotic resistance genes (ARGs) is still limited. In this study, we analyzed effluents from azithromycin-synthesis and veterinary-drug formulation facilities as well as sediments from receiving river and creek taken at the effluent discharge sites, upstream and downstream of discharge. Culturing showed that the effluent discharge significantly increased the proportion of antibiotic resistant bacteria in exposed sediments compared to the upstream ones. Quantitative real-time PCR revealed that effluents from both industries contained high and similar relative abundances of resistance genes [sul1, sul2, qacE/qacEΔ1, tet(A)], class 1 integrons (intI1) and IncP-1 plasmids (korB). Consequently, these genes significantly increased in relative abundances in receiving sediments, with more pronounced effects being observed for river than for creek sediments due to lower background levels of the investigated genes in the river. In addition, effluent discharge considerably increased transfer frequencies of captured ARGs from exposed sediments into Escherichia coli CV601 recipient as shown by biparental mating experiments. Most plasmids exogenously captured from effluent and polluted sediments belonged to the broad host range IncP-1ε plasmid group, conferred multiple antibiotic resistance and harbored class 1 integrons. Discharge of pharmaceutical waste from antibiotic manufacturing sites thus poses a risk for development and dissemination of multi-resistant bacteria, including pathogens.


Assuntos
Antibacterianos , Resistência Microbiana a Medicamentos , Genes Bacterianos/genética , Resíduos Industriais , Sequências Repetitivas Dispersas/genética , Antibacterianos/efeitos adversos , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Bactérias/genética , Indústria Farmacêutica , Resistência Microbiana a Medicamentos/efeitos dos fármacos , Resistência Microbiana a Medicamentos/genética , Resíduos Industriais/efeitos adversos , Resíduos Industriais/análise , Rios/química
3.
Water Res ; 126: 79-87, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-28923406

RESUMO

Effluents from pharmaceutical industries are recognized as significant contributors to aquatic pollution with antibiotics. Although such pollution has been mostly reported in Asia, knowledge on industrial discharges in other regions of the world, including Europe, and on the effects associated with such exposures is still limited. Thus, we performed chemical, microbiological and ecotoxicological analyses of effluents from two Croatian pharmaceutical industries during four seasons. In treated effluents of the company synthesizing macrolide antibiotic azithromycin (AZI), the total concentration of AZI and two macrolide by-products from its synthesis was 1-3 orders of magnitude higher in winter and springtime (up to 10.5 mg/L) than during the other two seasons (up to 638 µg/L). Accordingly, the highest total concentrations (up to 30 µg/L) in the recipient river were measured in winter and spring. Effluents from second company formulating veterinary antibiotics contained fluoroquinolones, trimethoprim, sulfonamides and tetracyclines ranging from low µg/L to approx. 200 µg/L. Low concentrations of these antibiotics, from below the limit of quantification to approx. few µg/L, have also been measured in the recipient stream. High frequency of culturable bacteria resistant to AZI (up to 83%) or sulfamethazine (up to 90%) and oxytetracycline (up to 50%) were also found in studied effluents. Finally, we demonstrated that toxicity to algae and water fleas often exceeded the permitted values. Most highly contaminated effluents induced multiple abnormalities in zebrafish embryos. In conclusion, using a wide array of analyses we have demonstrated that discharges from pharmaceutical industries can pose a significant ecological and public health concern due to their toxicity to aquatic organisms and risks for promoting development and spread of antibiotic resistance.


Assuntos
Antibacterianos/análise , Antibacterianos/toxicidade , Indústria Farmacêutica , Poluentes Químicos da Água/análise , Animais , Organismos Aquáticos/efeitos dos fármacos , Cladocera/efeitos dos fármacos , Croácia , Daphnia/efeitos dos fármacos , Farmacorresistência Bacteriana/efeitos dos fármacos , Resistência Microbiana a Medicamentos , Ecotoxicologia/métodos , Embrião não Mamífero/efeitos dos fármacos , Meio Ambiente , Monitoramento Ambiental , Resíduos Industriais/análise , Rios/química , Estações do Ano , Drogas Veterinárias/análise , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/embriologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA