Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biosens Bioelectron ; 246: 115890, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38048721

RESUMO

Real-time monitoring of health conditions is an emerging strong issue in health care, internet information, and other strongly evolving areas. Wearable electronics are versatile platforms for non-invasive sensing. Among a variety of wearable device principles, fiber electronics represent cutting-edge development of flexible electronics. Enabled by electrochemical sensing, fiber electronics have found a wide range of applications, providing new opportunities for real-time monitoring of health conditions by daily wearing, and electrochemical fiber sensors as explored in the present report are a promising emerging field. In consideration of the key challenges and corresponding solutions for electrochemical sensing fibers, we offer here a timely and comprehensive review. We discuss the principles and advantages of electrochemical sensing fibers and fabrics. Our review also highlights the importance of electrochemical sensing fibers in the fabrication of "smart" fabric designs, focusing on strategies to address key issues in fiber-based electrochemical sensors, and we provide an overview of smart clothing systems and their cutting-edge applications in therapeutic care. Our report offers a comprehensive overview of current developments in electrochemical sensing fibers to researchers in the fields of wearables, flexible electronics, and electrochemical sensing, stimulating forthcoming development of next-generation "smart" fabrics-based electrochemical sensing.


Assuntos
Técnicas Biossensoriais , Dispositivos Eletrônicos Vestíveis , Eletrônica
2.
Phys Chem Chem Phys ; 14(10): 3659-68, 2012 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-22314375

RESUMO

A new strategy based on a thick organic film modified electrode allowed us, for the first time, to explore the voltammetric processes for a series of hydrophilic ions by electrochemically induced redox transformations of common molecular probes. During the limited time available for voltammetry, this thick organic film ensured that the generated product of the molecular probe, which is within a limited diffusion layer, was kept far away from the aqueous-organic solvent interface; therefore, regardless of the degree of hydrophobicity, the generated product never participates in ion exchange across the interface and the charge neutrality of the organic film (containing an extremely hydrophobic electrolyte) can only be maintained by the injection of ions from the aqueous phase. Taking advantage of this fact, common redox probes, such as ferrocene (Fc) and 7,7,8,8-tetracyanoquinodimethane (TCNQ), which are almost useless for both three-phase electrode (TPE) and thin-layer cyclic voltammetry (TLCV) methods, can induce the transfer of numerous highly hydrophilic anions and cations. Consequently, the majority of their Gibbs transfer energies have been accurately determined for the first time to the best of our knowledge. With this in mind, using TCNQ as a redox probe to induce facilitated cation transfer, a stategy that is more advantageous than traditional methods has been developed. The main advantages are that: (i) voltammetric experiments performed on this system were free from the polarized potential window (ppw) in the aqueous phase and, as a result, this allowed the assessment of weakly assisted ion transfers, which appear at the terminal of the ppw at single polarized interfaces; (ii) without introducing the tetraphenylarsonium-tetraphenylborate (TPAs-TPB) thermodynamic assumption, one can conveniently evaluate both the association constant and the stoichiometric parameter between the ion and its ionophore by comparison of their direct and facilitated ion transfer voltammograms. These encouraging results illustrated the exciting innovation for assessing direct and facilitated ion transfers based on this new thick organic film modified electrode.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA