Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Front Med (Lausanne) ; 10: 1091463, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37089589

RESUMO

Aim: Neuroinflammation plays a key role in both the pathogenesis and the progression of cerebral cavernous malformations (CCM). Flutriciclamide ([18F]GE-180) is a translocator protein (TSPO) targeting positron emission tomography (PET) tracer, developed for imaging neuroinflammation. The objectives of this study were to describe characteristics of flutriciclamide uptake in different brain tissue regions in CCM patients compared to controls, and to evaluate flutriciclamide uptake and iron deposition within CCM lesions. Materials and methods: Five patients with CCM and six controls underwent a 60 or 90 min continuous PET/MRI scan following 315 ± 68.9 MBq flutriciclamide administration. Standardized uptake value (SUV) and standardized uptake value ratio (SUVr) were obtained using the striatum as a pseudo-reference. Quantitative susceptibility maps (QSM) were used to define the location of the vascular malformation and calculate the amount of iron deposition in each lesion. Results: Increased flutriciclamide uptake was observed in all CCM lesions. The temporal pole demonstrated the highest radiotracer uptake; the paracentral lobule, cuneus and hippocampus exhibited moderate uptake; while the striatum had the lowest uptake, with average SUVs of 0.66, 0.55, 0.63, 0.55, and 0.33 for patient with CCM and 0.57, 0.50, 0.48, 0.42, and 0.32 for controls, respectively. Regional SUVr showed similar trends. The average SUV and QSM values in CCM lesions were 0.58 ± 0.23 g/ml and 0.30 ± 0.10 ppm. SUVs and QSM were positively correlated in CCM lesions (r = 0.53, p = 0.03). Conclusion: The distribution of flutriciclamide ([18F]GE-180) in the human brain and CCM lesions demonstrated the potential of this TSPO PET tracer as a marker of neuroinflammation that may be relevant for characterizing CCM disease progression along with QSM.

2.
ACS Appl Mater Interfaces ; 13(46): 54739-54752, 2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34752058

RESUMO

Boron neutron capture therapy (BNCT) is an encouraging therapeutic modality for cancer treatment. Prostate-specific membrane antigen (PSMA) is a cell membrane protein that is abundantly overexpressed in prostate cancer and can be targeted with radioligand therapies to stimulate clinical responses in patients. In principle, a spatially targeted neutron beam together with specifically targeted PSMA ligands could enable prostate cancer-targeted BNCT. Thus, we developed and tested PSMA-targeted poly(lactide-co-glycolide)-block-poly(ethylene glycol) (PLGA-b-PEG) nanoparticles (NPs) loaded with carborane and tethered to the radiometal chelator deferoxamine B (DFB) for simultaneous positron emission tomography (PET) imaging and selective delivery of boron to prostate cancer. Monomeric PLGA-b-PEGs were covalently functionalized with either DFB or the PSMA ligand ACUPA. Different nanoparticle formulations were generated by nanoemulsification of the corresponding unmodified and DFB- or ACUPA-modified monomers in varying percent fractions. The nanoparticles were efficiently labeled with 89Zr and were subjected to in vitro and in vivo evaluation. The optimized DFB(25)ACUPA(75) NPs exhibited strong in vitro binding to PSMA in direct binding and competition radioligand binding assays in PSMA(+) PC3-Pip cells. [89Zr]DFB(25) NPs and [89Zr]DFB(25)ACUPA(75) NPs were injected to mice with bilateral PSMA(-) PC3-Flu and PSMA(+) PC3-Pip dual xenografts. The NPs demonstrated twofold superior accumulation in PC3-Pip tumors to that of PC3-Flu tumors with a tumor/blood ratio of 25; however, no substantial effect of the ACUPA ligands was detected. Moreover, fast release of carborane from the NPs was observed, resulting in a low boron delivery to tumors in vivo. In summary, these data demonstrate the synthesis, characterization, and initial biological assessment of PSMA-targeted, carborane-loaded PLGA-b-PEG nanoparticles and establish the foundation for future efforts to enable their best use in vivo.


Assuntos
Antineoplásicos/farmacologia , Compostos de Boro/farmacologia , Desferroxamina/farmacologia , Nanopartículas/química , Antígeno Prostático Específico/antagonistas & inibidores , Neoplasias da Próstata/tratamento farmacológico , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Compostos de Boro/síntese química , Compostos de Boro/química , Terapia por Captura de Nêutron de Boro , Desferroxamina/química , Humanos , Masculino , Camundongos , Camundongos Nus , Estrutura Molecular , Células PC-3 , Polietilenoglicóis/química , Poliglactina 910/química , Tomografia por Emissão de Pósitrons , Antígeno Prostático Específico/metabolismo , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/metabolismo , Nanomedicina Teranóstica , Células Tumorais Cultivadas
3.
J Nucl Med ; 55(7): 1132-7, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24914057

RESUMO

The Food and Drug Administration (FDA) issued the final rule for title 21 of Code of Federal Regulations part 212 regarding the regulations on current good manufacturing practice for PET drugs. The regulations are intended to ensure that PET drugs meet the safety and quality assurance requirements of the Federal Food, Drug, and Cosmetic Act. The new regulation became effective December 12, 2011, but the FDA used regulatory discretion to allow new drug applications and abbreviated new drug applications to be filed until June 12, 2012, without interruption of the existing PET drug production for human use. The production of PET drugs for both clinical use and clinical research use are outlined in this continuing education module, including an overview of specific requirements for compliance. Additionally, FDA preapproval inspections and postapproval reporting requirements are reviewed.


Assuntos
Regulamentação Governamental , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos , Aprovação de Drogas/economia , Aprovação de Drogas/legislação & jurisprudência , Estabilidade de Medicamentos , Honorários e Preços , Controle de Qualidade , Estados Unidos , United States Food and Drug Administration/legislação & jurisprudência
4.
J Nucl Med ; 50(12): 2042-8, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19910433

RESUMO

UNLABELLED: Prostate-specific membrane antigen (PSMA) is a transmembrane protein commonly found on the surface of late-stage and metastatic prostate cancer and a well-known imaging biomarker for staging and monitoring therapy. Although (111)In-labeled capropmab pendetide is the only approved agent available for PSMA imaging, its clinical use is limited because of its slow distribution and clearance that leads to challenging image interpretation. A small-molecule approach using radiolabeled urea-based PSMA inhibitors as imaging agents has shown promise for prostate cancer imaging. The motivation of this work is to explore phosphoramidates as a new class of potent PSMA inhibitors to develop more effective prostate cancer imaging agents with improved specificity and clearance properties. METHODS: N-succinimidyl-4-(18)F-fluorobenzoate ((18)F-SFB) was conjugated to S-2-((2-(S-4-amino-4-carboxybutanamido)-S-2-carboxyethoxy)hydroxyphosphorylamino)-pentanedioic acid (Phosphoramidate (1)), yielding S-2-((2-(S-4-(4-(18)F-fluorobenzamido)-4-carboxybutanamido)-S-2-carboxyethoxy)hydroxyphosphorylamino)-pentanedioic acid (3). In vivo studies were conducted in mice bearing either LNCaP (PSMA-positive) or PC-3 (PSMA-negative) tumors. PET images were acquired at 1 and 2 h with or without a preinjection of a nonradioactive version of the fluorophosphoramidate. Tissue distribution studies were performed at the end of the 2 h imaging sessions. RESULTS: Phosphoramidate (1) and its fluorobenzamido conjugate (2) were potent inhibitors of PSMA (inhibitory concentration of 50% [IC(50)], 14 and 0.68 nM, respectively). PSMA-mediated tumor accumulation was noted in the LNCaP versus the PC-3 tumor xenografts. The LNCaP tumor uptake was also blocked by the administration of nonradioactive (2) prior to imaging studies. With the exception of the kidneys, tumor-to-tissue and tumor-to-blood ratios were greater than 5:1 at 2 h. The strong kidney uptake may be due to the known PSMA expression in the mouse kidney, because significant reduction (>6-fold) in kidney activity was seen in mice injected with (2). CONCLUSION: (18)F-labeled phosphoramidate (3) is a representative of a new class of PSMA targeting peptidomimetic molecules that shows great promise as imaging agents for detecting PSMA+ prostate tumors.


Assuntos
Amidas/metabolismo , Antígenos de Superfície/metabolismo , Radioisótopos de Flúor/química , Glutamato Carboxipeptidase II/metabolismo , Peptídeos/química , Ácidos Fosfóricos/metabolismo , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/metabolismo , Amidas/farmacocinética , Amidas/farmacologia , Animais , Linhagem Celular Tumoral , Transformação Celular Neoplásica , Glutamato Carboxipeptidase II/antagonistas & inibidores , Humanos , Marcação por Isótopo , Masculino , Camundongos , Ácidos Fosfóricos/farmacocinética , Ácidos Fosfóricos/farmacologia , Tomografia por Emissão de Pósitrons , Neoplasias da Próstata/patologia , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA