Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Br J Radiol ; 95(1137): 20211211, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35671097

RESUMO

OBJECTIVE: To perform a systematic assessment and analyze the quality of radiomics methodology in current literature in the evaluation of renal masses using the Radiomics Quality Score (RQS) approach. METHODS: We systematically reviewed recent radiomics literature in renal masses published in PubMed, EMBASE, Elsevier, and Web of Science. Two reviewers blinded by each other's scores evaluated the quality of radiomics methodology in studies published from 2015 to August 2021 using the RQS approach. Owing to the diversity in the imaging modalities and radiomics applications, a meta-analysis could not be performed. RESULTS: Based on our inclusion/exclusion criteria, a total of 87 published studies were included in our study. The highest RQS was noted in three categories: reporting of clinical utility, gold standard, and feature reduction. The average RQS of the two reviewers ranged from 5 ≤ RQS≤19, with the maximum attainable RQS being 36. Very few (7/87 i.e., 8%) studies received an average RQS that ranged from 17 < RQS≤19, which represents studies with the highest RQS in our study. Many (39/87 i.e., 45%) studies received an average RQS that ranged from 13 < RQS≤15. No significant interreviewer scoring differences were observed. CONCLUSIONS: We report that the overall scientific quality and reporting of radiomics studies in renal masses is suboptimal, and subsequent studies should bolster current deficiencies to improve reporting of radiomics methodologies. ADVANCES IN KNOWLEDGE: The RQS approach is a meaningful quantitative scoring system to assess radiomics methodology quality and supports a comprehensive evaluation of the radiomics approach before its incorporation into clinical practice.

2.
Br J Radiol ; 94(1126): 20210221, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34520246

RESUMO

OBJECTIVES: For optimal utilization of healthcare resources, there is a critical need for early identification of COVID-19 patients at risk of poor prognosis as defined by the need for intensive unit care and mechanical ventilation. We tested the feasibility of chest X-ray (CXR)-based radiomics metrics to develop machine-learning algorithms for predicting patients with poor outcomes. METHODS: In this Institutional Review Board (IRB) approved, Health Insurance Portability and Accountability Act (HIPAA) compliant, retrospective study, we evaluated CXRs performed around the time of admission from 167 COVID-19 patients. Of the 167 patients, 68 (40.72%) required intensive care during their stay, 45 (26.95%) required intubation, and 25 (14.97%) died. Lung opacities were manually segmented using ITK-SNAP (open-source software). CaPTk (open-source software) was used to perform 2D radiomics analysis. RESULTS: Of all the algorithms considered, the AdaBoost classifier performed the best with AUC = 0.72 to predict the need for intubation, AUC = 0.71 to predict death, and AUC = 0.61 to predict the need for admission to the intensive care unit (ICU). AdaBoost had similar performance with ElasticNet in predicting the need for admission to ICU. Analysis of the key radiomic metrics that drive model prediction and performance showed the importance of first-order texture metrics compared to other radiomics panel metrics. Using a Venn-diagram analysis, two first-order texture metrics and one second-order texture metric that consistently played an important role in driving model performance in all three outcome predictions were identified. CONCLUSIONS: Considering the quantitative nature and reliability of radiomic metrics, they can be used prospectively as prognostic markers to individualize treatment plans for COVID-19 patients and also assist with healthcare resource management. ADVANCES IN KNOWLEDGE: We report on the performance of CXR-based imaging metrics extracted from RT-PCR positive COVID-19 patients at admission to develop machine-learning algorithms for predicting the need for ICU, the need for intubation, and mortality, respectively.


Assuntos
COVID-19/diagnóstico por imagem , Aprendizado de Máquina , Pneumonia Viral/diagnóstico por imagem , Radiografia Torácica , Adulto , Idoso , COVID-19/terapia , Cuidados Críticos/estatística & dados numéricos , Diagnóstico Precoce , Feminino , Necessidades e Demandas de Serviços de Saúde , Humanos , Masculino , Pessoa de Meia-Idade , Pneumonia Viral/terapia , Pneumonia Viral/virologia , Valor Preditivo dos Testes , Prognóstico , Respiração Artificial/estatística & dados numéricos , Estudos Retrospectivos , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA