Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(10)2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37430725

RESUMO

Natural language processing (NLP) technology has played a pivotal role in health monitoring as an important artificial intelligence method. As a key technology in NLP, relation triplet extraction is closely related to the performance of health monitoring. In this paper, a novel model is proposed for joint extraction of entities and relations, combining conditional layer normalization with the talking-head attention mechanism to strengthen the interaction between entity recognition and relation extraction. In addition, the proposed model utilizes position information to enhance the extraction accuracy of overlapping triplets. Experiments on the Baidu2019 and CHIP2020 datasets demonstrate that the proposed model can effectively extract overlapping triplets, which leads to significant performance improvements compared with baselines.


Assuntos
Inteligência Artificial , Processamento de Linguagem Natural , Reconhecimento Psicológico , Tecnologia
2.
Sensors (Basel) ; 17(3)2017 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-28335569

RESUMO

The prospect of Line-of-Business Services (LoBSs) for infrastructure of Emerging Sensor Networks (ESNs) is exciting. Access control remains a top challenge in this scenario as the service provider's server contains a lot of valuable resources. LoBSs' users are very diverse as they may come from a wide range of locations with vastly different characteristics. Cost of joining could be low and in many cases, intruders are eligible users conducting malicious actions. As a result, user access should be adjusted dynamically. Assessing LoBSs' risk dynamically based on both frequency and threat degree of malicious operations is therefore necessary. In this paper, we proposed a Quantitative Risk Assessment Model (QRAM) involving frequency and threat degree based on value at risk. To quantify the threat degree as an elementary intrusion effort, we amend the influence coefficient of risk indexes in the network security situation assessment model. To quantify threat frequency as intrusion trace effort, we make use of multiple behavior information fusion. Under the influence of intrusion trace, we adapt the historical simulation method of value at risk to dynamically access LoBSs' risk. Simulation based on existing data is used to select appropriate parameters for QRAM. Our simulation results show that the duration influence on elementary intrusion effort is reasonable when the normalized parameter is 1000. Likewise, the time window of intrusion trace and the weight between objective risk and subjective risk can be set to 10 s and 0.5, respectively. While our focus is to develop QRAM for assessing the risk of LoBSs for infrastructure of ESNs dynamically involving frequency and threat degree, we believe it is also appropriate for other scenarios in cloud computing.

3.
J Med Syst ; 38(10): 121, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25123456

RESUMO

Wireless Body Area Networks (WBANs) are amongst the best options for remote health monitoring. However, as standalone systems WBANs have many limitations due to the large amount of processed data, mobility of monitored users, and the network coverage area. Integrating WBANs with cloud computing provides effective solutions to these problems and promotes the performance of WBANs based systems. Accordingly, in this paper we propose a cloud-based real-time remote health monitoring system for tracking the health status of non-hospitalized patients while practicing their daily activities. Compared with existing cloud-based WBAN frameworks, we divide the cloud into local one, that includes the monitored users and local medical staff, and a global one that includes the outer world. The performance of the proposed framework is optimized by reducing congestion, interference, and data delivery delay while supporting users' mobility. Several novel techniques and algorithms are proposed to accomplish our objective. First, the concept of data classification and aggregation is utilized to avoid clogging the network with unnecessary data traffic. Second, a dynamic channel assignment policy is developed to distribute the WBANs associated with the users on the available frequency channels to manage interference. Third, a delay-aware routing metric is proposed to be used by the local cloud in its multi-hop communication to speed up the reporting process of the health-related data. Fourth, the delay-aware metric is further utilized by the association protocols used by the WBANs to connect with the local cloud. Finally, the system with all the proposed techniques and algorithms is evaluated using extensive ns-2 simulations. The simulation results show superior performance of the proposed architecture in optimizing the end-to-end delay, handling the increased interference levels, maximizing the network capacity, and tracking user's mobility.


Assuntos
Armazenamento e Recuperação da Informação , Internet , Monitorização Fisiológica/instrumentação , Telemedicina , Tecnologia sem Fio , Técnicas Biossensoriais , Simulação por Computador , Sistemas Computacionais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA