Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Mol Recognit ; 30(12)2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28639323

RESUMO

Dioxins and dioxin-like compounds (DLCs) are known to cause endocrine disruption in humans and animals. Being lipophilic xenobiotic chemicals, they can be easily absorbed into the biological system from the surrounding environments, thereby causing various health dysfunctions. In the present study, a total of 100 dioxins and DLCs were taken, and their binding pattern was assessed with the xenosensors pregnane X receptor (PXR) and constitutive androstane receptor (CAR) in comparison with the corresponding known inhibitors and a well-studied endocrine disrupting xenobiotic, bisphenol A (BPA). The nuclear receptors CAR and PXR are known to play a significant role in handling potential toxins by coordinating cellular transport and metabolic functions of the same. Among different endocrine-disrupting chemicals used in the present study, DLCs (PCDFs and PCBs) elicited better interactions in comparison with the parent dioxin (polychlorinated dibenzodioxins) compounds. On comparing D scores of all the compounds against both the receptors, PCDF 8-hydroxy-3,4-dichlorodibenzofuran (8-OH-DCDF) and PCB tetrachlorobenzyltoluene (TCBT) exhibited significant molecular interactions against PXR (-7.633 kcal mol-1 ) and CAR (-8.389 kcal mol-1 ), respectively. Predominant interactions were found to be H-bonding, π-π stacking, hydrophobic, polar, and van der Waals. By contrast, BPA and some natural ligands tested in this study showed lower binding affinities with these receptors than certain DLCs reported herein, ie, certain DLCs might be more toxic than the proven toxic agent, BPA. Such studies play a pivotal role in the risk assessment of exposure to dioxins and DLCs on human health.


Assuntos
Simulação por Computador , Dioxinas e Compostos Semelhantes a Dioxinas/química , Dioxinas e Compostos Semelhantes a Dioxinas/metabolismo , Receptores Citoplasmáticos e Nucleares/química , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores de Esteroides/metabolismo , Medição de Risco , Biocatálise , Receptor Constitutivo de Androstano , Interações Hidrofóbicas e Hidrofílicas , Ligantes , Simulação de Acoplamento Molecular , Receptor de Pregnano X , Receptores de Esteroides/química , Reprodutibilidade dos Testes
2.
Toxicol Mech Methods ; 27(2): 151-163, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27997270

RESUMO

Dioxins and dioxin-like compounds (DLCs) are the ones with poor water solubility and low volatility, resistant to physical, chemical and biological processes, persistent in the environment even under extreme conditions. Due to lipophilic nature, they get adhered to the fatty material and concentrate through biomagnification and bioaccumulation, thereby easily getting incorporated into food chains, paving the way to endocrine disruption via modulation of various human receptors. This in turn leads to certain adverse health effects. In the present study, a total of 100 dioxins and DLCs were taken and their binding pattern was assessed with the ketosteroid receptors, i.e. androgen (hAR), glucocorticoid (hGR), progesterone (hPR) and mineralocorticoid (hMR) in comparison to the corresponding natural steroids and a known endocrine disrupting xenobiotic, Bisphenol A (BPA). Most of the DLCs, particularly those bearing hydroxyl (-OH) group showed considerable affinities with ketosteroid receptors. On comparing D scores of all the dioxins and DLCs against all four receptors, compound 8-hydroxy-3,4-dichlorodibenzofuran(8-OH-DCDF) exhibited least D score of -9.549 kcal mol-1 against hAR. 3,8-Dihydroxy-2-chlorodibenzofuran(3,8-DiOH-CDF), 4'-hydroxy-2,3,4,5-tetrachlorobiphenyl (4'-OH-TCB) and 4-hydroxy-2,2',5'-trichlorobiphenyl(4-OH-TCB) also showed comparable molecular interactions with the ketosteroid receptors. These interactions mainly include H-bonding, π-π stacking, hydrophobic, polar and van der Waals' interactions. In contrast, BPA and some natural ligands tested in this study showed lower binding affinities with these receptors than certain DLCs reported herein, i.e. certain DLCs might be more toxic than the proven toxic agent, BPA. Such studies play a pivotal role in the risk assessment of exposure to dioxins and DLCs on human health.


Assuntos
Dioxinas/química , Disruptores Endócrinos/química , Cetosteroides/química , Receptores de Esteroides/química , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Ligantes , Simulação de Acoplamento Molecular , Ligação Proteica , Reprodutibilidade dos Testes , Medição de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA